This section describes disk partitioning strategies.
farm/cluster machines:
hda1 - swap (2 * RAM)
hda2 - / (remaining disk space)
hdb1 - /maxa (total disk)
desktops (without windows):
hda1 - swap (2 * RAM)
hda2 - / (4 GB)
hda3 - /spare (remaining disk space)
hdb1 - /maxa (total disk)
hdd1 - /maxb (total disk)
desktops (with windows):
hda1 - /win (total disk)
hdb1 - swap (2 * RAM)
hdb2 - / (4 GB)
hdb3 - /spare (remaining disk space)
hdd1 - /maxa (total disk)
laptops (single disk):
hda1 - /win (half the total disk size)
hda2 - swap (2 * RAM)
hda3 - / (remaining disk space)
Install a minimal set of packages for the farm. Users are allowed to configure desktops as they wish.
FAI ( http://www.informatik.uni-koeln.de/fai/) is an automated system to install a Debian GNU/Linux operating system on a PC cluster. You can take one or more virgin PCs, turn on the power and after a few minutes Linux is installed, configured and running on the whole cluster, without any interaction necessary.
SystemImager ( http://systemimager.org) is software that automates Linux installs, software distribution, and production deployment.
I believe in having a completely distributed system. This means each machine contains a copy of the operating system. Installing the OS on each machine manually is cumbersome. To optimise this process, what I do is first set up and install one machine exactly the way I want to. I then create a tar and gzipped file of the entire system and place it on a CD-ROM which I then clone on each machine in my cluster.
The commands I use to create the tar file are as follows:
tar -czvlps --same-owner --atime-preserve -f /maxa/slash.tgz /
I use have a script called go
that takes a hostname and
IP address as its arguments and untars the slash.tgz
file on
the CD-ROM and replaces the hostname and IP address in the appropriate
locations. A version of the go
script and the input files for
it can be accessed at:
http://www.ram.org/computing/linux/linux/cluster/. This script
will have to be edited based on your cluster design.
To make this work, I also use Tom's Root Boot package (
http://www.toms.net/rb/) to boot
the machine and clone the system. The go
script can be
placed on a CD-ROM or on the floppy containing Tom's Root Boot package
(you need to delete a few programs from this package since the floppy
disk is stretched to capacity).
More conveniently, you could burn a bootable CD-ROM containing
Tom's Root Boot package, including the go
script, and the tgz
file containing the system you wish to clone. You can also edit Tom's
Root Boot's init scripts so that it directly executes the go
script (you will still have to set IP addresses if you don't use
DHCP).
Alternately, you can create your own custom disk (like a rescue disk) that contains the kernel you can want and the tools you want. There are several documents that describe how to do this, including the Linux Bootdisk HOWTO ( http://www.linuxdoc.org/HOWTO/Bootdisk-HOWTO/), which also contains links to other pre-made boot/root disks.
Thus you can develop a system where all you have to do is insert a CDROM, turn on the machine, have a cup of coffee (or a can of coke) and come back to see a full clone. You then repeat this process for as many machines as you have. This procedure has worked extremely well for me and if you have someone else actually doing the work (of inserting and removing CD-ROMs) then it's ideal.
Rob Fantini ( rob@fantinibakery.com) has contributed modifications of the scripts above that he used for cloning a Mandrake 8.2 system accessible at http://www.ram.org/computing/linux/cluster/fantini_contribution.tgz.
If you have DHCP set up, then you don't need to reset the IP
address and that part of it can be removed from the go
script.
DHCP has the advantage that you don't muck around with IP addresses at all provided the DHCP server is configured appropriately. It has the disadvantage that it relies on a centralised server (and like I said, I tend to distribute things as much as possible). Also, linking hardware ethernet addresses to IP addresses can make it inconvenient if you wish to replace machines or change hostnames routinely.
The hardware in general has worked really well for us. Specific issues are listed below:
The AMD dual 1.2 GHz machines run really hot. Two of them in a room increase the temperature significantly. Thus while they might be okay as desktops, the cooling and power consumption when using them as part of a large cluster is a consideration. The AMD Palmino configuration described previously seems to work really well, but I definitely recommend getting two fans in the case--this solved all our instability problems.
Some tar executables apparently don't create a tar file the nice way they're supposed to (especially in terms of referencing and de-referencing symbolic links). The solution to this I've found is to use a tar executable that does, like the one from RedHat 7.0.
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |