README.solaris - Perl version 5 on Solaris systems
For the most part, everything should just work.
Starting with Solaris 8, perl5.00503 (or higher) is supplied with the operating system, so you might not even need to build a newer version of perl at all. The Sun-supplied version is installed in /usr/perl5 with /usr/bin/perl pointing to /usr/perl5/bin/perl. Do not disturb that installation unless you really know what you are doing. If you remove the perl supplied with the OS, you will render some bits of your system inoperable. If you wish to install a newer version of perl, install it under a different prefix from /usr/perl5. Common prefixes to use are /usr/local and /opt/perl.
You may wish to put your version of perl in the PATH of all users by changing the link /usr/bin/perl. This is probably OK, as most perl scripts shipped with Solaris use an explicit path. (There are a few exceptions, such as /usr/bin/rpm2cpio and /etc/rcm/scripts/README, but these are also sufficiently generic that the actual version of perl probably doesn't matter too much.)
Solaris ships with a range of Solaris-specific modules. If you choose to install your own version of perl you will find the source of many of these modules is available on CPAN under the Sun::Solaris:: namespace.
Solaris may include two versions of perl, e.g. Solaris 9 includes both 5.005_03 and 5.6.1. This is to provide stability across Solaris releases, in cases where a later perl version has incompatibilities with the version included in the preceeding Solaris release. The default perl version will always be the most recent, and in general the old version will only be retained for one Solaris release. Note also that the default perl will NOT be configured to search for modules in the older version, again due to compatibility/stability concerns. As a consequence if you upgrade Solaris, you will have to rebuild/reinstall any additional CPAN modules that you installed for the previous Solaris version. See the CPAN manpage under 'autobundle' for a quick way of doing this.
As an interim measure, you may either change the #! line of your scripts to specifically refer to the old perl version, e.g. on Solaris 9 use #!/usr/perl5/5.00503/bin/perl to use the perl version that was the default for Solaris 8, or if you have a large number of scripts it may be more convenient to make the old version of perl the default on your system. You can do this by changing the appropriate symlinks under /usr/perl5 as follows (example for Solaris 9):
# cd /usr/perl5 # rm bin man pod # ln -s ./5.00503/bin # ln -s ./5.00503/man # ln -s ./5.00503/lib/pod # rm /usr/bin/perl # ln -s ../perl5/5.00503/bin/perl /usr/bin/perl
In both cases this should only be considered to be a temporary measure - you should upgrade to the later version of perl as soon as is practicable.
Note also that the perl command-line utilities (e.g. perldoc) and any that are added by modules that you install will be under /usr/perl5/bin, so that directory should be added to your PATH.
Sun: perl's Configure: uname uname -r Name osname osvers SunOS 4.1.3 Solaris 1.1 sunos 4.1.3 SunOS 5.6 Solaris 2.6 solaris 2.6 SunOS 5.8 Solaris 8 solaris 2.8 SunOS 5.9 Solaris 9 solaris 2.9 SunOS 5.10 Solaris 10 solaris 2.10
The complete table can be found in the Sun Managers' FAQ <ftp://ftp.cs.toronto.edu/pub/jdd/sunmanagers/faq> under ``9.1) Which Sun models run which versions of SunOS?''.
The Sun Managers' FAQ is available at <ftp://ftp.cs.toronto.edu/pub/jdd/sunmanagers/faq>
Include /usr/ccs/bin/ in your PATH.
Several tools needed to build perl are located in /usr/ccs/bin/: ar, as, ld, and make. Make sure that /usr/ccs/bin/ is in your PATH.
You need to make sure the following packages are installed (this info is extracted from the Solaris FAQ):
for tools (sccs, lex, yacc, make, nm, truss, ld, as): SUNWbtool, SUNWsprot, SUNWtoo
for libraries & headers: SUNWhea, SUNWarc, SUNWlibm, SUNWlibms, SUNWdfbh, SUNWcg6h, SUNWxwinc, SUNWolinc
for 64 bit development: SUNWarcx, SUNWbtoox, SUNWdplx, SUNWscpux, SUNWsprox, SUNWtoox, SUNWlmsx, SUNWlmx, SUNWlibCx
If you are in doubt which package contains a file you are missing, try to find an installation that has that file. Then do a
$ grep /my/missing/file /var/sadm/install/contents
This will display a line like this:
/usr/include/sys/errno.h f none 0644 root bin 7471 37605 956241356 SUNWhea
The last item listed (SUNWhea in this example) is the package you need.
You don't need to have /usr/ucb/ in your PATH to build perl. If you want /usr/ucb/ in your PATH anyway, make sure that /usr/ucb/ is NOT in your PATH before the directory containing the right C compiler.
If you use Sun's C compiler, make sure the correct directory (usually /opt/SUNWspro/bin/) is in your PATH (before /usr/ucb/).
If you use gcc, make sure your installation is recent and complete. perl versions since 5.6.0 build fine with gcc > 2.8.1 on Solaris >= 2.6.
You must Configure perl with
$ sh Configure -Dcc=gcc
If you don't, you may experience strange build errors.
If you have updated your Solaris version, you may also have to update your gcc. For example, if you are running Solaris 2.6 and your gcc is installed under /usr/local, check in /usr/local/lib/gcc-lib and make sure you have the appropriate directory, sparc-sun-solaris2.6/ or i386-pc-solaris2.6/. If gcc's directory is for a different version of Solaris than you are running, then you will need to rebuild gcc for your new version of Solaris.
You can get a precompiled version of gcc from <http://www.sunfreeware.com/> or <http://www.blastwave.org/>. Make sure you pick up the package for your Solaris release.
If you wish to use gcc to build add-on modules for use with the perl shipped with Solaris, you should use the Solaris::PerlGcc module which is available from CPAN. The perl shipped with Solaris is configured and built with the Sun compilers, and the compiler configuration information stored in Config.pm is therefore only relevant to the Sun compilers. The Solaris:PerlGcc module contains a replacement Config.pm that is correct for gcc - see the module for details.
The following information applies to gcc version 2. Volunteers to update it as appropropriate for gcc version 3 would be appreciated.
The versions of as and ld supplied with Solaris work fine for building perl. There is normally no need to install the GNU versions to compile perl.
If you decide to ignore this advice and use the GNU versions anyway, then be sure that they are relatively recent. Versions newer than 2.7 are apparently new enough. Older versions may have trouble with dynamic loading.
If you wish to use GNU ld, then you need to pass it the -Wl,-E flag. The hints/solaris_2.sh file tries to do this automatically by setting the following Configure variables:
ccdlflags="$ccdlflags -Wl,-E" lddlflags="$lddlflags -Wl,-E -G"
However, over the years, changes in gcc, GNU ld, and Solaris ld have made it difficult to automatically detect which ld ultimately gets called. You may have to manually edit config.sh and add the -Wl,-E flags yourself, or else run Configure interactively and add the flags at the appropriate prompts.
If your gcc is configured to use GNU as and ld but you want to use the Solaris ones instead to build perl, then you'll need to add -B/usr/ccs/bin/ to the gcc command line. One convenient way to do that is with
$ sh Configure -Dcc='gcc -B/usr/ccs/bin/'
Note that the trailing slash is required. This will result in some harmless warnings as Configure is run:
gcc: file path prefix `/usr/ccs/bin/' never used
These messages may safely be ignored. (Note that for a SunOS4 system, you must use -B/bin/ instead.)
Alternatively, you can use the GCC_EXEC_PREFIX environment variable to ensure that Sun's as and ld are used. Consult your gcc documentation for further information on the -B option and the GCC_EXEC_PREFIX variable.
The make under /usr/ccs/bin works fine for building perl. If you have the Sun C compilers, you will also have a parallel version of make (dmake). This works fine to build perl, but can sometimes cause problems when running 'make test' due to underspecified dependencies between the different test harness files. The same problem can also affect the building of some add-on modules, so in those cases either specify '-m serial' on the dmake command line, or use /usr/ccs/bin/make instead. If you wish to use GNU make, be sure that the set-group-id bit is not set. If it is, then arrange your PATH so that /usr/ccs/bin/make is before GNU make or else have the system administrator disable the set-group-id bit on GNU make.
Solaris provides some BSD-compatibility functions in /usr/ucblib/libucb.a. Perl will not build and run correctly if linked against -lucb since it contains routines that are incompatible with the standard Solaris libc. Normally this is not a problem since the solaris hints file prevents Configure from even looking in /usr/ucblib for libraries, and also explicitly omits -lucb.
Make sure your PATH includes the compiler (/opt/SUNWspro/bin/ if you're using Sun's compiler) as well as /usr/ccs/bin/ to pick up the other development tools (such as make, ar, as, and ld). Make sure your path either doesn't include /usr/ucb or that it includes it after the compiler and compiler tools and other standard Solaris directories. You definitely don't want /usr/ucb/cc.
If you have the LD_LIBRARY_PATH environment variable set, be sure that it does NOT include /lib or /usr/lib. If you will be building extensions that call third-party shared libraries (e.g. Berkeley DB) then make sure that your LD_LIBRARY_PATH environment variable includes the directory with that library (e.g. /usr/local/lib).
If you get an error message
dlopen: stub interception failed
it is probably because your LD_LIBRARY_PATH environment variable includes a directory which is a symlink to /usr/lib (such as /lib). The reason this causes a problem is quite subtle. The file libdl.so.1.0 actually *only* contains functions which generate 'stub interception failed' errors! The runtime linker intercepts links to ``/usr/lib/libdl.so.1.0'' and links in internal implementations of those functions instead. [Thanks to Tim Bunce for this explanation.]
By default, perl-5.6.0 (or later) is compiled as a 32-bit application with largefile and long-long support.
General 32-bit vs. 64-bit issues.
Solaris 7 and above will run in either 32 bit or 64 bit mode on SPARC CPUs, via a reboot. You can build 64 bit apps whilst running 32 bit mode and vice-versa. 32 bit apps will run under Solaris running in either 32 or 64 bit mode. 64 bit apps require Solaris to be running 64 bit mode.
Existing 32 bit apps are properly known as LP32, i.e. Longs and Pointers are 32 bit. 64-bit apps are more properly known as LP64. The discriminating feature of a LP64 bit app is its ability to utilise a 64-bit address space. It is perfectly possible to have a LP32 bit app that supports both 64-bit integers (long long) and largefiles (> 2GB), and this is the default for perl-5.6.0.
For a more complete explanation of 64-bit issues, see the ``Solaris 64-bit Developer's Guide'' at <http://docs.sun.com/>
You can detect the OS mode using ``isainfo -v'', e.g.
$ isainfo -v # Ultra 30 in 64 bit mode 64-bit sparcv9 applications 32-bit sparc applications
By default, perl will be compiled as a 32-bit application. Unless you want to allocate more than ~ 4GB of memory inside perl, or unless you need more than 255 open file descriptors, you probably don't need perl to be a 64-bit app.
For Solaris 2.6 and onwards, there are two different ways for 32-bit applications to manipulate large files (files whose size is > 2GByte). (A 64-bit application automatically has largefile support built in by default.)
First is the ``transitional compilation environment'', described in lfcompile64(5). According to the man page,
The transitional compilation environment exports all the explicit 64-bit functions (xxx64()) and types in addition to all the regular functions (xxx()) and types. Both xxx() and xxx64() functions are available to the program source. A 32-bit application must use the xxx64() functions in order to access large files. See the lf64(5) manual page for a complete listing of the 64-bit transitional interfaces.
The transitional compilation environment is obtained with the following compiler and linker flags:
getconf LFS64_CFLAGS -D_LARGEFILE64_SOURCE getconf LFS64_LDFLAG # nothing special needed getconf LFS64_LIBS # nothing special needed
Second is the ``large file compilation environment'', described in lfcompile(5). According to the man page,
Each interface named xxx() that needs to access 64-bit entities to access large files maps to a xxx64() call in the resulting binary. All relevant data types are defined to be of correct size (for example, off_t has a typedef definition for a 64-bit entity).
An application compiled in this environment is able to use the xxx() source interfaces to access both large and small files, rather than having to explicitly utilize the transitional xxx64() interface calls to access large files.
Two exceptions are fseek() and ftell(). 32-bit applications should use fseeko(3C) and ftello(3C). These will get automatically mapped to fseeko64() and ftello64().
The large file compilation environment is obtained with
getconf LFS_CFLAGS -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 getconf LFS_LDFLAGS # nothing special needed getconf LFS_LIBS # nothing special needed
By default, perl uses the large file compilation environment and relies on Solaris to do the underlying mapping of interfaces.
To compile a 64-bit application on an UltraSparc with a recent Sun Compiler, you need to use the flag ``-xarch=v9''. getconf(1) will tell you this, e.g.
$ getconf -a | grep v9 XBS5_LP64_OFF64_CFLAGS: -xarch=v9 XBS5_LP64_OFF64_LDFLAGS: -xarch=v9 XBS5_LP64_OFF64_LINTFLAGS: -xarch=v9 XBS5_LPBIG_OFFBIG_CFLAGS: -xarch=v9 XBS5_LPBIG_OFFBIG_LDFLAGS: -xarch=v9 XBS5_LPBIG_OFFBIG_LINTFLAGS: -xarch=v9 _XBS5_LP64_OFF64_CFLAGS: -xarch=v9 _XBS5_LP64_OFF64_LDFLAGS: -xarch=v9 _XBS5_LP64_OFF64_LINTFLAGS: -xarch=v9 _XBS5_LPBIG_OFFBIG_CFLAGS: -xarch=v9 _XBS5_LPBIG_OFFBIG_LDFLAGS: -xarch=v9 _XBS5_LPBIG_OFFBIG_LINTFLAGS: -xarch=v9
This flag is supported in Sun WorkShop Compilers 5.0 and onwards (now marketed under the name Forte) when used on Solaris 7 or later on UltraSparc systems.
If you are using gcc, you would need to use -mcpu=v9 -m64 instead. This option is not yet supported as of gcc 2.95.2; from install/SPECIFIC in that release:
GCC version 2.95 is not able to compile code correctly for sparc64 targets. Users of the Linux kernel, at least, can use the sparc32 program to start up a new shell invocation with an environment that causes configure to recognize (via uname -a) the system as sparc-*-* instead.
All this should be handled automatically by the hints file, if requested.
As of 5.8.1, long doubles are working if you use the Sun compilers (needed for additional math routines not included in libm).
If you for some reason (such as binary backward compatibility) really need to use perl's malloc, you can rebuild perl from the sources and Configure the build with
$ sh Configure -Dusemymalloc
You should not use perl's malloc if you are building with gcc. There are reports of core dumps, especially in the PDL module. The problem appears to go away under -DDEBUGGING, so it has been difficult to track down. Sun's compiler appears to be okay with or without perl's malloc. [XXX further investigation is needed here.]
The problem is that various structures visible via procfs use off_t, and if you compile with largefile support these change from 32 bits to 64 bits. Thus what you get back from procfs doesn't match up with the structures in perl, resulting in garbage. See proc(4) for further discussion.
A fix for Proc::ProcessTable is to edit Makefile to explicitly remove the largefile flags from the ones MakeMaker picks up from Config.pm. This will result in Proc::ProcessTable being built under the correct environment. Everything should then be OK as long as Proc::ProcessTable doesn't try to share off_t's with the rest of perl, or if it does they should be explicitly specified as off64_t.
It may be possible to use the Entropy Gathering Daemon (written in Perl!), available from <http://www.lothar.com/tech/crypto/>.
... relocation truncated to fit: BASE13 ...
and dies. Therefore the SunOS 4.1 hints file explicitly sets the ld to be /usr/bin/ld.
As of Perl 5.8.1 the dynamic loading of libraries (DynaLoader, XSLoader) also seems to have become broken in in SunOS 4.x. Therefore the default is to build Perl statically.
Running the test suite in SunOS 4.1 is a bit tricky since the lib/Tie/File/t/09_gen_rs test hangs (subtest #51, FWIW) for some unknown reason. Just stop the test and kill that particular Perl process.
There are various other failures, that as of SunOS 4.1.4 and gcc 3.2.2 look a lot like gcc bugs. Many of the failures happen in the Encode tests, where for example when the test expects ``0'' you get ``0'' which should after a little squinting look very odd indeed. Another example is earlier in t/run/fresh_perl where chr(0xff) is expected but the test fails because the result is chr(0xff). Exactly.
This is the ``make test'' result from the said combination:
Failed 27 test scripts out of 745, 96.38% okay.
Running the "harness" is painful because of the many failing Unicode-related tests will output megabytes of failure messages, but if one patiently waits, one gets these results:
Failed Test Stat Wstat Total Fail Failed List of Failed ----------------------------------------------------------------------------- ... ../ext/Encode/t/at-cn.t 4 1024 29 4 13.79% 14-17 ../ext/Encode/t/at-tw.t 10 2560 17 10 58.82% 2 4 6 8 10 12 14-17 ../ext/Encode/t/enc_data.t 29 7424 ?? ?? % ?? ../ext/Encode/t/enc_eucjp.t 29 7424 ?? ?? % ?? ../ext/Encode/t/enc_module.t 29 7424 ?? ?? % ?? ../ext/Encode/t/encoding.t 29 7424 ?? ?? % ?? ../ext/Encode/t/grow.t 12 3072 24 12 50.00% 2 4 6 8 10 12 14 16 18 20 22 24 Failed Test Stat Wstat Total Fail Failed List of Failed ------------------------------------------------------------------------------ ../ext/Encode/t/guess.t 255 65280 29 40 137.93% 10-29 ../ext/Encode/t/jperl.t 29 7424 15 30 200.00% 1-15 ../ext/Encode/t/mime-header.t 2 512 10 2 20.00% 2-3 ../ext/Encode/t/perlio.t 22 5632 38 22 57.89% 1-4 9-16 19-20 23-24 27-32 ../ext/List/Util/t/shuffle.t 0 139 ?? ?? % ?? ../ext/PerlIO/t/encoding.t 14 1 7.14% 11 ../ext/PerlIO/t/fallback.t 9 2 22.22% 3 5 ../ext/Socket/t/socketpair.t 0 2 45 70 155.56% 11-45 ../lib/CPAN/t/vcmp.t 30 1 3.33% 25 ../lib/Tie/File/t/09_gen_rs.t 0 15 ?? ?? % ?? ../lib/Unicode/Collate/t/test.t 199 30 15.08% 7 26-27 71-75 81-88 95 101 103-104 106 108- 109 122 124 161 169-172 ../lib/sort.t 0 139 119 26 21.85% 107-119 op/alarm.t 4 1 25.00% 4 op/utfhash.t 97 1 1.03% 31 run/fresh_perl.t 91 1 1.10% 32 uni/tr_7jis.t ?? ?? % ?? uni/tr_eucjp.t 29 7424 6 12 200.00% 1-6 uni/tr_sjis.t 29 7424 6 12 200.00% 1-6 56 tests and 467 subtests skipped. Failed 27/811 test scripts, 96.67% okay. 1383/75399 subtests failed, 98.17% okay.
The alarm() test failure is caused by system() apparently blocking alarm(). That is probably a libc bug, and given that SunOS 4.x has been end-of-lifed years ago, don't hold your breath for a fix. In addition to that, don't try anything too Unicode-y, especially with Encode, and you should be fine in SunOS 4.x.
Please report any errors, updates, or suggestions to perlbug@perl.org.
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |