math - floating-point mathematical library
Lb libm
Name Description
cbrt cube root
fma fused multiply-add
hypot Euclidean distance
sqrt square root
Name Description
fpclassify classify a floating-point value
isfinite determine whether a value is finite
isinf determine whether a value is infinite
isnan determine whether a value is
isnormal determine whether a value is normalized
Name Description
frexp extract exponent and mantissa
ilogb extract exponent
ldexp multiply by power of 2
logb extract exponent
scalbln adjust exponent
scalbn adjust exponent
Name Description
copysign copy sign bit
fabs absolute value
fdim positive difference
fmax maximum function
fmin minimum function
signbit extract sign bit
Name Description
ceil integer no less than
floor integer no greater than
fmod positive remainder
llrint round to integer in fixed-point format
llround round to nearest integer in fixed-point format
lrint round to integer in fixed-point format
lround round to nearest integer in fixed-point format
modf extract integer and fractional parts
nearbyint round to integer (silent)
nextafter next representable value
nexttoward next representable value
remainder remainder
remquo remainder with partial quotient
rint round to integer
round round to nearest integer
trunc integer no greater in magnitude than
The
ceil (,);
floor (,);
llround (,);
lround (,);
round (,);
and
trunc ();
functions round in predetermined directions, whereas
llrint (,);
lrint (,);
and
rint ();
round according to the current (dynamic) rounding mode.
For more information on controlling the dynamic rounding mode, see
fenv(3)
and
fesetround(3).
Name Description
isgreater greater than relation
isgreaterequal greater than or equal to relation
isless less than relation
islessequal less than or equal to relation
islessgreater less than or greater than relation
isunordered unordered relation
Name Description
acos inverse cosine
acosh inverse hyperbolic cosine
asin inverse sine
asinh inverse hyperbolic sine
atan inverse tangent
atanh inverse hyperbolic tangent
atan2 atan(y/x); complex argument
cos cosine
cosh hyperbolic cosine
erf error function
erfc complementary error function
exp exponential base e
exp2 exponential base 2
expm1 exp(x)-1
j0 Bessel function of the first kind of the order 0
j1 Bessel function of the first kind of the order 1
jn Bessel function of the first kind of the order n
lgamma log gamma function
log natural logarithm
log10 logarithm to base 10
log1p log(1+x)
pow exponential x**y
sin trigonometric function
sinh hyperbolic function
tan trigonometric function
tanh hyperbolic function
tgamma gamma function
y0 Bessel function of the second kind of the order 0
y1 Bessel function of the second kind of the order 1
yn Bessel function of the second kind of the order n
Unlike the algebraic functions listed earlier, the routines in this section may not produce a result that is correctly rounded, so reproducible results cannot be guaranteed across platforms. For most of these functions, however, incorrect rounding occurs rarely, and then only in very-close-to-halfway cases.
Many of the routines to compute transcendental functions produce inaccurate results in other than the default rounding mode.
On some architectures, trigonometric argument reduction is not
performed accurately, resulting in errors greater than 1
ulp
for large arguments to
cos (,);
sin (,);
and
tan (.);
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |