hcreate, hdestroy, hsearch, hcreate_r, hdestroy_r, hsearch_r - hash table management
#include <search.h> int hcreate(size_t nel); ENTRY *hsearch(ENTRY item, ACTION action); void hdestroy(void); #define _GNU_SOURCE
#include <search.h> int hcreate_r(size_t nel, struct hsearch_data *htab); int hsearch_r(ENTRY item, ACTION action, ENTRY **retval, struct hsearch_data *htab); void hdestroy_r(struct hsearch_data *htab);
The three functions hcreate_r(), hsearch_r(), hdestroy_r() are reentrant versions that allow a program to use more than one hash search table at the same time. The last argument, htab, points to a structure that describes the table on which the function is to operate. The programmer should treat this structure as opaque (i.e., do not attempt to directly access or modify the fields in this structure).
First a hash table must be created using hcreate(). The argument nel specifies the maximum number of entries in the table. (This maximum cannot be changed later, so choose it wisely.) The implementation may adjust this value upward to improve the performance of the resulting hash table.
The hcreate_r() function performs the same task as hcreate(), but for the table described by the structure *htab. The structure pointed to by htab must be zeroed before the first call to hcreate_r().
The function hdestroy() frees the memory occupied by the hash table that was created by hcreate(). After calling hdestroy() a new hash table can be created using hcreate(). The hdestroy_r() function performs the analogous task for a hash table described by *htab, which was previously created using hcreate_r().
The hsearch() function searches the hash table for an item with the same key as item (where "the same" is determined using strcmp(3)), and if successful returns a pointer to it.
The argument item is of type ENTRY, which is defined in <search.h> as follows:
typedef struct entry { char *key; void *data; } ENTRY;
The field key points to a null-terminated string which is the search key. The field data points to data that is associated with that key.
The argument action determines what hsearch() does after an unsuccessful search. This argument must either have the value ENTER, meaning insert a copy of item (and return a pointer to the new hash table entry as the function result), or the value FIND, meaning that NULL should be returned. (If action is FIND, then data is ignored.)
The hsearch_r() function is like hsearch() but operates on the hash table described by *htab. The hsearch_r() function differs from hsearch() in that a pointer to the found item is returned in *retval, rather than as the function result.
On success, hsearch() returns a pointer to an entry in the hash table. hsearch() returns NULL on error, that is, if action is ENTER and the hash table is full, or action is FIND and item cannot be found in the hash table. hsearch_r() returns non-zero on success, and 0 on error.
hcreate() and hcreate_r() can fail for the following reasons:
hsearch() and hsearch_r() can fail for the following reasons:
POSIX.1-2001 only specifies the ENOMEM error.
The hdestroy() and hdestroy_r() functions do not free the buffers pointed to by the key and data elements of the hash table entries. (It can't do this because it doesn't know whether these buffers were allocated dynamically.) If these buffers need to be freed (perhaps because the program is repeatedly creating and destroying hash tables, rather than creating a single table whose lifetime matches that of the program), then the program must maintain bookkeeping data structures that allow it to free them.
Individual hash table entries can be added, but not deleted.
The following program inserts 24 items into a hash table, then prints some of them.
#include <stdio.h> #include <stdlib.h> #include <search.h> char *data[] = { "alpha", "bravo", "charlie", "delta", "echo", "foxtrot", "golf", "hotel", "india", "juliet", "kilo", "lima", "mike", "november", "oscar", "papa", "quebec", "romeo", "sierra", "tango", "uniform", "victor", "whisky", "x-ray", "yankee", "zulu" }; int main(void) { ENTRY e, *ep; int i; hcreate(30); for (i = 0; i < 24; i++) { e.key = data[i]; /* data is just an integer, instead of a pointer to something */ e.data = (void *) i; ep = hsearch(e, ENTER); /* there should be no failures */ if (ep == NULL) { fprintf(stderr, "entry failed\n"); exit(EXIT_FAILURE); } } for (i = 22; i < 26; i++) { /* print two entries from the table, and show that two are not in the table */ e.key = data[i]; ep = hsearch(e, FIND); printf("%9.9s -> %9.9s:%d\n", e.key, ep ? ep->key : "NULL", ep ? (int)(ep->data) : 0); } hdestroy(); exit(EXIT_SUCCESS); }
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |