The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

setspent (3)
  • >> setspent (3) ( Linux man: Библиотечные вызовы )
  •  

    NAME

    getspnam, getspnam_r, getspent, getspent_r, setspent, endspent,
    fgetspent, fgetspent_r, sgetspent, sgetspent_r, putspent,
    lckpwdf, ulckpwdf - get shadow password file entry
     
    

    SYNOPSIS

    /* General shadow password file API */
    
    #include <shadow.h> struct spwd *getspnam(const char *name); struct spwd *getspent(void); void setspent(void); void endspent(void); struct spwd *fgetspent(FILE *fp); struct spwd *sgetspent(const char *s); int putspent(struct spwd *p, FILE *fp); int lckpwdf(void); int ulckpwdf(void); /* GNU extension */
    #include <shadow.h> int getspent_r(struct spwd *spbuf,
    char *buf, size_t buflen, struct spwd **spbufp); int getspnam_r(const char *name, struct spwd *spbuf,
    char *buf, size_t buflen, struct spwd **spbufp); int fgetspent_r(FILE *fp, struct spwd *spbuf,
    char *buf, size_t buflen, struct spwd **spbufp); int sgetspent_r(const char *s, struct spwd *spbuf,
    char *buf, size_t buflen, struct spwd **spbufp);

    Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

    getspent_r(), getspnam_r(), fgetspent_r(), sgetspent_r(): _BSD_SOURCE || _SVID_SOURCE  

    DESCRIPTION

    Long ago it was considered safe to have encrypted passwords openly visible in the password file. When computers got faster and people got more security-conscious, this was no longer acceptable. Julianne Frances Haugh implemented the shadow password suite that keeps the encrypted passwords in the shadow password database (e.g., the local shadow password file /etc/shadow, NIS, and LDAP), readable only by root.

    The functions described below resemble those for the traditional password database (e.g., see getpwnam(3) and getpwent(3)).

    The getspnam() function returns a pointer to a structure containing the broken-out fields of the record in the shadow password database that matches the username name.

    The getspent() function returns a pointer to the next entry in the shadow password database. The position in the input stream is initialized by setspent(). When done reading, the program may call endspent() so that resources can be deallocated.

    The fgetspent() function is similar to getspent() but uses the supplied stream instead of the one implicitly opened by setspent().

    The sgetspent() function parses the supplied string s into a struct spwd.

    The putspent() function writes the contents of the supplied struct spwd *p as a text line in the shadow password file format to the stream fp. String entries with value NULL and numerical entries with value -1 are written as an empty string.

    The lckpwdf() function is intended to protect against multiple simultaneous accesses of the shadow password database. It tries to acquire a lock, and returns 0 on success, or -1 on failure (lock not obtained within 15 seconds). The ulckpwdf() function releases the lock again. Note that there is no protection against direct access of the shadow password file. Only programs that use lckpwdf() will notice the lock.

    These were the functions that formed the original shadow API. They are widely available.  

    Reentrant versions

    Analogous to the reentrant functions for the password database, glibc also has reentrant functions for the shadow password database. The getspnam_r() function is like getspnam() but stores the retrieved shadow password structure in the space pointed to by spbuf. This shadow password structure contains pointers to strings, and these strings are stored in the buffer buf of size buflen. A pointer to the result (in case of success) or NULL (in case no entry was found or an error occurred) is stored in *spbufp.

    The functions getspent_r(), fgetspent_r(), and sgetspent_r() are similarly analogous to their non-reentrant counterparts.

    Some non-glibc systems also have functions with these names, often with different prototypes.  

    Structure

    The shadow password structure is defined in <shadow.h> as follows:

    struct spwd {
        char *sp_namp;     /* Login name */
        char *sp_pwdp;     /* Encrypted password */
        long  sp_lstchg;   /* Date of last change (measured
                              in days since 1 Jan 1970) */
        long  sp_min;      /* Min # of days between changes */
        long  sp_max;      /* Max # of days between changes */
        long  sp_warn;     /* # of days before password expires
                              to warn user to change it */
        long  sp_inact;    /* # of days after password expires
                              until account is disabled */
        long  sp_expire;   /* Date when account expires (measured
                              in days since 1 Jan 1970) */
        unsigned long sp_flag;  /* Reserved */
    };
    
     

    RETURN VALUE

    The functions that return a pointer return NULL if no more entries are available or if an error occurs during processing. The functions which have int as the return value return 0 for success and -1 for failure.

    For the non-reentrant functions, the return value may point to static area, and may be overwritten by subsequent calls to these functions.

    The reentrant functions return zero on success. In case of error, an error number is returned.  

    ERRORS

    ERANGE
    Supplied buffer is too small.
     

    FILES

    /etc/shadow
    local shadow password database file
    /etc/.pwd.lock
    lock file

    The include file <paths.h> defines the constant _PATH_SHADOW to the pathname of the shadow password file.  

    CONFORMING TO

    The shadow password database and its associated API are not specified in POSIX.1-2001. However, many other systems provide a similar API.  

    SEE ALSO

    getgrnam(3), getpwnam(3), getpwnam_r(3), shadow(5)  

    COLOPHON

    This page is part of release 3.14 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.


     

    Index

    NAME
    SYNOPSIS
    DESCRIPTION
    Reentrant versions
    Structure
    RETURN VALUE
    ERRORS
    FILES
    CONFORMING TO
    SEE ALSO
    COLOPHON


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру