DBI::Profile - Performance profiling and benchmarking for the DBI
DBI_PROFILE=2 prog.pl
This will profile your program and then output a textual summary grouped by query when the program exits. You can also enable profiling by setting the Profile attribute of any DBI handle:
$dbh->{Profile} = 2;
Then the summary will be printed when the handle is destroyed.
Many other values apart from are possible - see ``ENABLING A PROFILE'' below.
For a more elaborate interface, suitable for larger programs, see DBI::ProfileDumper and dbiprof. For Apache/mod_perl applications see DBI::ProfileDumper::Apache.
For example, the calls that the selectrow_arrayref() method makes to prepare() and execute() etc. are not counted individually because the time spent in those methods is going to be allocated to the selectrow_arrayref() method when it returns. If this was not done then it would be very easy to double count time spent inside the DBI.
For each profiled method call the DBI walks along the Path and uses each value in the Path to step into and grow the Data tree.
For example, if the Path is
[ 'foo', 'bar', 'baz' ]
then the new profile sample data will be merged into the tree at
$h->{Profile}->{Data}->{foo}->{bar}->{baz}
But it's not very useful to merge all the call data into one leaf node (except to get an overall 'time spent inside the DBI' total). It's more common to want the Path to include dynamic values such as the current statement text and/or the name of the method called to show what the time spent inside the DBI was for.
The Path can contain some 'magic cookie' values that are automatically replaced by corresponding dynamic values when they're used. These magic cookies always start with a punctuation character.
For example a value of '"!MethodName"' in the Path causes the corresponding entry in the Data to be the name of the method that was called. For example, if the Path was:
[ 'foo', '!MethodName', 'selectall_arrayref' ]
and the selectall_arrayref() method was called, then the profile sample data for that call will be merged into the tree at:
$h->{Profile}->{Data}->{foo}->{selectall_arrayref}->{bar}
[ 106, # 0: count of samples at this node 0.0312958955764771, # 1: total duration 0.000490069389343262, # 2: first duration 0.000176072120666504, # 3: shortest duration 0.00140702724456787, # 4: longest duration 1023115819.83019, # 5: time of first sample 1023115819.86576, # 6: time of last sample ]
After the first sample, later samples always update elements 0, 1, and 6, and may update 3 or 4 depending on the duration of the sampled call.
$h->{Profile} = DBI::Profile->new();
The Profile attribute holds a blessed reference to a hash object that contains the profile data and attributes relating to it.
The class the Profile object is blessed into is expected to provide at least a DESTROY method which will dump the profile data to the DBI trace file handle (STDERR by default).
All these examples have the same effect as each other:
$h->{Profile} = 0; $h->{Profile} = "/DBI::Profile"; $h->{Profile} = DBI::Profile->new(); $h->{Profile} = {}; $h->{Profile} = { Path => [] };
Similarly, these examples have the same effect as each other:
$h->{Profile} = 6; $h->{Profile} = "6/DBI::Profile"; $h->{Profile} = "!Statement:!MethodName/DBI::Profile"; $h->{Profile} = { Path => [ '!Statement', '!MethodName' ] };
If a non-blessed hash reference is given then the DBI::Profile module is automatically "require"'d and the reference is blessed into that class.
If a string is given then it is processed like this:
($path, $module, $args) = split /\//, $string, 3
@path = split /:/, $path @args = split /:/, $args
eval "require $module" if $module $module ||= "DBI::Profile"
$module->new( Path => \@Path, @args )
So the first value is used to select the Path to be used (see below). The second value, if present, is used as the name of a module which will be loaded and it's "new" method called. If not present it defaults to DBI::Profile. Any other values are passed as arguments to the "new" method. For example: ""2/DBIx::OtherProfile/Foo:42"".
Numbers can be used as a shorthand way to enable common Path values. The simplest way to explain how the values are interpreted is to show the code:
push @Path, "DBI" if $path_elem & 0x01; push @Path, "!Statement" if $path_elem & 0x02; push @Path, "!MethodName" if $path_elem & 0x04; push @Path, "!MethodClass" if $path_elem & 0x08; push @Path, "!Caller2" if $path_elem & 0x10;
So ``2'' is the same as ``!Statement'' and ``6'' (2+4) is the same as ``!Statement:!Method''. Those are the two most commonly used values. Using a negative number will reverse the path. Thus ``-6'' will group by method name then statement.
The spliting and parsing of string values assigned to the Profile attribute may seem a little odd, but there's a good reason for it. Remember that attributes can be embedded in the Data Source Name string which can be passed in to a script as a parameter. For example:
dbi:DriverName(Profile=>2):dbname dbi:DriverName(Profile=>{Username}:!Statement/MyProfiler/Foo:42):dbname
And also, if the "DBI_PROFILE" environment variable is set then The DBI arranges for every driver handle to share the same profile object. When perl exits a single profile summary will be generated that reflects (as nearly as practical) the total use of the DBI by the application.
The elements of Path array can be one of the following types:
Use the current Statement text. Typically that's the value of the Statement attribute for the handle the method was called with. Some methods, like commit() and rollback(), are unrelated to a particular statement. For those methods !Statement records an empty string.
For statement handles this is always simply the string that was given to prepare() when the handle was created. For database handles this is the statement that was last prepared or executed on that database handle. That can lead to a little 'fuzzyness' because, for example, calls to the quote() method to build a new statement will typically be associated with the previous statement. In practice this isn't a significant issue and the dynamic Path mechanism can be used to setup your own rules.
!MethodName
Use the name of the DBI method that the profile sample relates to.
!MethodClass
Use the fully qualified name of the DBI method, including the package, that the profile sample relates to. This shows you where the method was implemented. For example:
'DBD::_::db::selectrow_arrayref' => 0.022902s 'DBD::mysql::db::selectrow_arrayref' => 2.244521s / 99 = 0.022445s avg (first 0.022813s, min 0.022051s, max 0.028932s)
The ``DBD::_::db::selectrow_arrayref'' shows that the driver has inherited the selectrow_arrayref method provided by the DBI.
But you'll note that there is only one call to DBD::_::db::selectrow_arrayref but another 99 to DBD::mysql::db::selectrow_arrayref. Currently the first call Pern't record the true location. That may change.
!Caller
Use a string showing the filename and line number of the code calling the method.
!Caller2
Use a string showing the filename and line number of the code calling the method, as for !Caller, but also include filename and line number of the code that called that. Calls from DBI:: and DBD:: packages are skipped.
!File
Same as !Caller above except that only the filename is included, not the line number.
!File2
Same as !Caller2 above except that only the filenames are included, not the line number.
The subroutine is passed the DBI method name and the handle it was called on. It should return a list of values to used at this point in the Path. If it returns an empty list then the method call is not profiled.
(References, and values that begin with punctuation characters are reserved.)
Only the first 100 elements in Path are used.
If the value of Path is anything other than an array reference, it is treated as if it was:
[ DBI::Profile::!Statement ]
print $h->{Profile}->format;
To discard the profile data and start collecting fresh data you can do:
$h->{Profile}->{Data} = undef;
The default results format looks like this:
DBI::Profile: 0.001015s 42.7% (5 calls) programname @ YYYY-MM-DD HH:MM:SS '' => 0.000024s / 2 = 0.000012s avg (first 0.000015s, min 0.000009s, max 0.000015s) 'SELECT mode,size,name FROM table' => 0.000991s / 3 = 0.000330s avg (first 0.000678s, min 0.000009s, max 0.000678s)
Which shows the total time spent inside the DBI, with a count of the total number of method calls and the name of the script being run, then a formated version of the profile data tree.
If the results are being formated when the perl process is exiting (which is usually the case when the DBI_PROFILE environment variable is used) then the percentage of time the process spent inside the DBI is also shown. If the process is not exiting then the percentage is calculated using the time between the first and last call to the DBI.
In the example above the paths in the tree are only one level deep and use the Statement text as the value (that's the default behaviour).
The merged profile data at the 'leaves' of the tree are presented as total time spent, count, average time spent (which is simply total time divided by the count), then the time spent on the first call, the time spent on the fastest call, and finally the time spent on the slowest call.
The 'avg', 'first', 'min' and 'max' times are not particularly useful when the profile data path only contains the statement text. Here's an extract of a more detailed example using both statement text and method name in the path:
'SELECT mode,size,name FROM table' => 'FETCH' => 0.000076s 'fetchrow_hashref' => 0.036203s / 108 = 0.000335s avg (first 0.000490s, min 0.000152s, max 0.002786s)
Here you can see the 'avg', 'first', 'min' and 'max' for the 108 calls to fetchrow_hashref() become rather more interesting. Also the data for FETCH just shows a time value because it was only called once.
Currently the profile data is output sorted by branch names. That may change in a later version so the leaf nodes are sorted by total time per leaf node.
DBI->trace_msg($results, 0); # see $ON_DESTROY_DUMP below
to write them to the DBI trace() filehandle (which defaults to STDERR). To direct the DBI trace filehandle to write to a file without enabling tracing the trace() method can be called with a trace level of 0. For example:
DBI->trace(0, $filename);
The same effect can be achieved without changing the code by setting the "DBI_TRACE" environment variable to "0=filename".
The $DBI::Profile::ON_DESTROY_DUMP variable holds a code ref that's called to perform the output of the formatted results. The default value is:
$ON_DESTROY_DUMP = sub { DBI->trace_msg($results, 0) };
Apart from making it easy to send the dump elsewhere, it can also be useful as a simple way to disable dumping results.
Sometimes it's useful to be able to summarise some or all of the collected data. The dbi_profile_merge() function can be used to merge leaf node values.
use DBI qw(dbi_profile_merge);
$time_in_dbi = dbi_profile_merge(my $totals=[], @$leaves);
Merges profile data node. Given a reference to a destination array, and zero or more references to profile data, merges the profile data into the destination array. For example:
$time_in_dbi = dbi_profile_merge( my $totals=[], [ 10, 0.51, 0.11, 0.01, 0.22, 1023110000, 1023110010 ], [ 15, 0.42, 0.12, 0.02, 0.23, 1023110005, 1023110009 ], );
$totals will then contain
[ 25, 0.93, 0.11, 0.01, 0.23, 1023110000, 1023110010 ]
and $time_in_dbi will be 0.93;
For example, to get the time spent 'inside' the DBI during an http request, your logging code run at the end of the request (i.e. mod_perl LogHandler) could use:
my $time_in_dbi = 0; if (my $Profile = $dbh->{Profile}) { # if DBI profiling is enabled $time_in_dbi = dbi_profile_merge(my $total=[], $Profile->{Data}); $Profile->{Data} = {}; # reset the profile data }
If profiling has been enabled then $time_in_dbi will hold the time spent inside the DBI for that handle (and any other handles that share the same profile data) since the last request.
XXX example to be added later using a selectall_arrayref call XXX nested inside a fetch loop where the first column of the XXX outer loop is bound to the profile Path using XXX bind_column(1, \${ $dbh->{Profile}->{Path}->[0] }) XXX so you end up with separate profiles for each loop XXX (patches welcome to add this to the docs :)
use DBI; use DBI::Profile (dbi_profile dbi_time);
my $t1 = dbi_time(); # floating point high-resolution time
... execute code you want to profile here ...
my $t2 = dbi_time(); dbi_profile($h, $statement, $method, $t1, $t2);
The $h parameter is the handle the extra profile sample should be associated with. The $statement parameter is the string to use where the Path specifies !Statement. If $statement is undef then $h->{Statement} will be used. Similarly $method is the string to use if the Path specifies !MethodName. There is no default value for $method.
The $h->{Profile}{Path} attribute is processed by dbi_profile() in the usual way.
It is recommended that you keep these extra data samples separate from the DBI profile data samples by using values for $statement and $method that are distinct from any that are likely to appear in the profile data normally.
If a method throws an exception itself (not via RaiseError) then it won't be counted in the profile.
If a HandleError subroutine throws an exception (rather than returning 0 and letting RaiseError do it) then the method call won't be counted in the profile.
Time spent in DESTROY is added to the profile of the parent handle.
Time spent in DBI->*() methods is not counted. The time spent in the driver connect method, $drh->connect(), when it's called by DBI->connect is counted if the DBI_PROFILE environment variable is set.
Time spent fetching tied variables, $DBI::errstr, is counted.
Time spent in FETCH for $h->{Profile} is not counted, so getting the profile data doesn't alter it.
DBI::PurePerl does not support profiling (though it could in theory).
A few platforms don't support the gettimeofday() high resolution time function used by the DBI (and available via the dbi_time() function). In which case you'll get integer resolution time which is mostly useless.
On Windows platforms the dbi_time() function is limited to millisecond resolution. Which isn't sufficiently fine for our needs, but still much better than integer resolution. This limited resolution means that fast method calls will often register as taking 0 time. And timings in general will have much more 'jitter' depending on where within the 'current millisecond' the start and and timing was taken.
This documentation could be more clear. Probably needs to be reordered to start with several examples and build from there. Trying to explain the concepts first seems painful and to lead to just as many forward references. (Patches welcome!)
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |