The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

chegv (3)
  • >> chegv (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         chegv - compute all the  eigenvalues,  and  optionally,  the
         eigenvectors  of  a  complex  generalized Hermitian-definite
         eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
         or B*A*x=(lambda)*x
    
    SYNOPSIS
         SUBROUTINE CHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B,  LDB,  W,
                   WORK, LWORK, RWORK, INFO )
    
         CHARACTER JOBZ, UPLO
    
         INTEGER INFO, ITYPE, LDA, LDB, LWORK, N
    
         REAL RWORK( * ), W( * )
    
         COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void chegv(int itype, char jobz, char uplo, int  n,  complex
                   *ca,  int lda, complex *cb, int ldb, float *w, int
                   *info) ;
    
    PURPOSE
         CHEGV computes all  the  eigenvalues,  and  optionally,  the
         eigenvectors  of  a  complex  generalized Hermitian-definite
         eigenproblem,     of     the     form      A*x=(lambda)*B*x,
         A*Bx=(lambda)*x,   or  B*A*x=(lambda)*x.   Here  A and B are
         assumed to be Hermitian and B is also
         positive definite.
    
    
    ARGUMENTS
         ITYPE     (input) INTEGER
                   Specifies the problem type to be solved:
                   = 1:  A*x = (lambda)*B*x
                   = 2:  A*B*x = (lambda)*x
                   = 3:  B*A*x = (lambda)*x
    
         JOBZ      (input) CHARACTER*1
                   = 'N':  Compute eigenvalues only;
                   = 'V':  Compute eigenvalues and eigenvectors.
    
         UPLO      (input) CHARACTER*1
                   = 'U':  Upper triangles of A and B are stored;
                   = 'L':  Lower triangles of A and B are stored.
    
         N         (input) INTEGER
                   The order of the matrices A and B.  N >= 0.
    
         A         (input/output) COMPLEX array, dimension (LDA, N)
                   On entry, the Hermitian matrix A.  If UPLO =  'U',
                   the leading N-by-N upper triangular part of A con-
                   tains the upper triangular part of the  matrix  A.
                   If UPLO = 'L', the leading N-by-N lower triangular
                   part of A contains the lower  triangular  part  of
                   the matrix A.
    
                   On exit, if JOBZ = 'V', then if INFO = 0,  A  con-
                   tains the matrix Z of eigenvectors.  The eigenvec-
                   tors are normalized as follows:  if ITYPE =  1  or
                   2,  Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I.
                   If JOBZ = 'N', then on exit the upper triangle (if
                   UPLO='U')  or  the lower triangle (if UPLO='L') of
                   A, including the diagonal, is destroyed.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         B         (input/output) COMPLEX array, dimension (LDB, N)
                   On entry, the Hermitian matrix B.  If UPLO =  'U',
                   the leading N-by-N upper triangular part of B con-
                   tains the upper triangular part of the  matrix  B.
                   If UPLO = 'L', the leading N-by-N lower triangular
                   part of B contains the lower  triangular  part  of
                   the matrix B.
    
                   On exit, if INFO <= N, the part  of  B  containing
                   the matrix is overwritten by the triangular factor
                   U or L from the Cholesky factorization B =  U**H*U
                   or B = L*L**H.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(1,N).
    
         W         (output) REAL array, dimension (N)
                   If INFO = 0, the eigenvalues in ascending order.
    
         WORK      (workspace/output)   COMPLEX   array,    dimension
                   (LWORK)
                   On exit, if INFO = 0, WORK(1) returns the  optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The  length  of  the   array   WORK.    LWORK   >=
                   max(1,2*N-1).   For  optimal  efficiency, LWORK >=
                   (NB+1)*N, where NB is  the  blocksize  for  CHETRD
                   returned by ILAENV.
    
         RWORK     (workspace) REAL array, dimension (max(1, 3*N-2))
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
                   > 0:  CPOTRF or CHEEV returned an error code:
                   <= N:  if INFO = i, CHEEV failed  to  converge;  i
                   off-diagonal elements of an intermediate tridiago-
                   nal form did not converge to zero; > N:   if  INFO
                   =  N  + i, for 1 <= i <= N, then the leading minor
                   of order i of B is  not  positive  definite.   The
                   factorization  of  B could not be completed and no
                   eigenvalues or eigenvectors were computed.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру