NAME clagtm - perform a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be zero, one, or minus one SYNOPSIS SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB ) CHARACTER TRANS INTEGER LDB, LDX, N, NRHS REAL ALPHA, BETA COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, * ) #include <sunperf.h> void clagtm(char trans, int n, int nrhs, float alpha, com- plex *dl, complex *d, complex *du, complex *cx, int ldx, float sbeta, complex *cb, int ldb) ; PURPOSE CLAGTM performs a matrix-vector product of the form ARGUMENTS TRANS (input) CHARACTER Specifies the operation applied to A. = 'N': No transpose, B := alpha * A * X + beta * B = 'T': Transpose, B := alpha * A**T * X + beta * B = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. ALPHA (input) REAL The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, it is assumed to be 0. DL (input) COMPLEX array, dimension (N-1) The (n-1) sub-diagonal elements of T. D (input) COMPLEX array, dimension (N) The diagonal elements of T. DU (input) COMPLEX array, dimension (N-1) The (n-1) super-diagonal elements of T. X (input) COMPLEX array, dimension (LDX,NRHS) The N by NRHS matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(N,1). BETA (input) REAL The scalar beta. BETA must be 0., 1., or -1.; otherwise, it is assumed to be 1. B (input/output) COMPLEX array, dimension (LDB,NRHS) On entry, the N by NRHS matrix B. On exit, B is overwritten by the matrix expression B := alpha * A * X + beta * B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(N,1).
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |