The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

clagtm (3)
  • >> clagtm (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         clagtm - perform a matrix-vector product of the form   B  :=
         alpha * A * X + beta * B  where A is a tridiagonal matrix of
         order N, B and X are N by NRHS matrices, and alpha and  beta
         are  real  scalars, each of which may be zero, one, or minus
         one
    
    SYNOPSIS
         SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX,
                   BETA, B, LDB )
    
         CHARACTER TRANS
    
         INTEGER LDB, LDX, N, NRHS
    
         REAL ALPHA, BETA
    
         COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, * )
    
    
    
         #include <sunperf.h>
    
         void clagtm(char trans, int n, int nrhs, float  alpha,  com-
                   plex  *dl,  complex  *d, complex *du, complex *cx,
                   int ldx,
                    float sbeta, complex *cb, int ldb) ;
    
    PURPOSE
         CLAGTM performs a matrix-vector product of the form
    
    
    ARGUMENTS
         TRANS     (input) CHARACTER
                   Specifies the operation applied to A.  = 'N':   No
                   transpose, B := alpha * A * X + beta * B
                   = 'T':  Transpose,    B := alpha * A**T * X + beta
                   * B
                   = 'C':  Conjugate transpose, B := alpha * A**H * X
                   + beta * B
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         NRHS      (input) INTEGER
                   The number of right hand sides, i.e.,  the  number
                   of columns of the matrices X and B.
    
         ALPHA     (input) REAL
                   The scalar alpha.  ALPHA must be 0., 1.,  or  -1.;
                   otherwise, it is assumed to be 0.
    
         DL        (input) COMPLEX array, dimension (N-1)
                   The (n-1) sub-diagonal elements of T.
    
         D         (input) COMPLEX array, dimension (N)
                   The diagonal elements of T.
    
         DU        (input) COMPLEX array, dimension (N-1)
                   The (n-1) super-diagonal elements of T.
    
         X         (input) COMPLEX array, dimension (LDX,NRHS)
                   The N by NRHS matrix X.  LDX      (input)  INTEGER
                   The  leading  dimension  of  the  array X.  LDX >=
                   max(N,1).
    
         BETA      (input) REAL
                   The scalar beta.  BETA must be  0.,  1.,  or  -1.;
                   otherwise, it is assumed to be 1.
    
         B         (input/output) COMPLEX array, dimension (LDB,NRHS)
                   On entry, the N by NRHS matrix B.  On exit,  B  is
                   overwritten  by the matrix expression B := alpha *
                   A * X + beta * B.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(N,1).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру