The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dchex (3)
  • >> dchex (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dchex - compute the Cholesky decomposition  of  a  symmetric
         positive definite matrix A.
    
    SYNOPSIS
         SUBROUTINE DCHEX (DA, LDA, N, K, L, DZ, LDZ, NZ, DCOS, DSIN,
                   JOB)
    
         SUBROUTINE SCHEX (SA, LDA, N, K, L, SZ, LDZ, NZ, SCOS, SSIN,
                   JOB)
    
         SUBROUTINE CCHEX (ZA, LDA, N, K, L, ZZ, LDZ, NZ, DCOS, DSIN,
                   JOB)
    
         SUBROUTINE ZCHEX (CA, LDA, N, K, L, CZ, LDZ, NZ, SCOS, SSIN,
                   JOB)
    
    
    
         #include <sunperf.h>
    
         void dchex(double *r, int ldr, int p, int k, int  l,  double
                   *dz,  int  ldz, int nz, double *dc, double *s, int
                   job) ;
    
         void schex(float *r, int ldr, int p, int  k,  int  l,  float
                   *sz,  int  ldz,  int  nz, float *sc, float *s, int
                   job) ;
    
         void cchex(complex *r, int ldr, int p, int k, int l, complex
                   *cz,  int  ldz,  int nz, float *c, complex *s, int
                   job) ;
    
         void zchex(doublecomplex *r, int ldr, int p, int k,  int  l,
                   doublecomplex  *zz,  int  ldz, int nz, double *dc,
                   doublecomplex *s, int job) ;
    
    ARGUMENTS
         xA        On entry, the upper triangle of the matrix A.   On
                   exit,  the  upper triangle of A contains the upper
                   triangle of the updated factor.  The strict  lower
                   triangle of A is not referenced.
    
         LDA       Leading dimension of the array A as specified in a
                   dimension or type statement.  LDA >= max(1,N).
    
         N         Order of the matrix A.  N >= 0.
    
         K         First column to be permuted.  1 <= K <= L.
    
         L         Last column  to  be  permuted;  must  be  strictly
                   greater than K.  K <= L <= N.
    
         xZ        Array of vectors into which the  transformation  U
                   is multiplied.  Not used if NZ = 0.
    
         LDZ       Leading dimension of the array Z as specified in a
                   dimension or type statement.  LDZ >= max(1,N).
    
         NZ        Number of columns in the matrix Z.  NZ >= 0.
    
         xCOS      Cosines of the transforming rotations.
    
         xSIN      Sines of the transforming rotations.
    
         JOB       Determines the type of permutation:
                        1    right circular shift
                        2    left circular shift
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER           ISHFRT, LDA, N, NULL, NZ
               PARAMETER        (ISHFRT = 1)
               PARAMETER        (N = 4)
               PARAMETER        (LDA = N)
               PARAMETER        (NULL = 1)
               PARAMETER        (NZ = 0)
         C
               DOUBLE PRECISION  A(LDA,N), ANULL, C(N), S(N), WORK(N)
               INTEGER           ICOL, INFO, IPIVOT(N), IROW, JOB, K
         C
               EXTERNAL          DCHDC, DCHEX
         C
         C     Initialize the arrays A and Z to store the matrices A and Z
         C     shown below and initialize X and Y to store the vectors x and y
         C     shown below.
         C
         C         4  3  2  1        1
         C     A = 3  4  3  2    x = 1
         C         2  3  4  3        1
         C         1  2  3  4        1
         C
               DATA A / 4.0D0, 3*8D8, 3.0D0, 4.0D0, 2*8D8, 2.0D0, 3.0D0, 4.0D0,
              $         8D8, 1.0D0, 2.0D0, 3.0D0, 4.0D0 /
         C
               PRINT 1000
               DO 100, IROW = 1, N
                 PRINT 1010, (A(ICOL,IROW), ICOL = 1, IROW),
              $              (A(IROW,ICOL), ICOL = IROW + 1, N)
           100 CONTINUE
               PRINT 1020
               PRINT 1010, ((A(IROW,ICOL), ICOL = 1, N), IROW = 1, N)
               CALL DCHDC (A, LDA, N, WORK, IPIVOT, JOB, INFO)
               IF (INFO .EQ. N) THEN
                 PRINT 1030
                 PRINT 1010, A(1,1), A(1,2), A(1,3), A(1,4)
                 PRINT 1040,         A(2,2), A(2,3), A(2,4)
                 PRINT 1050,                 A(3,3), A(3,4)
                 PRINT 1060,                         A(4,4)
                 K = 1
                 ANULL = 0.0D0
                 JOB = ISHFRT
                 CALL DCHEX (A, LDA, N, K, N, ANULL, NULL, NZ, C, S, JOB)
                 PRINT 1070
                 PRINT 1010, A(1,1), A(1,2), A(1,3), A(1,4)
                 PRINT 1040,         A(2,2), A(2,3), A(2,4)
                 PRINT 1050,                 A(3,3), A(3,4)
                 PRINT 1060,                         A(4,4)
                 PRINT 1080
                 PRINT 1090, (C(IROW), S(IROW), IROW = 1, N)
               ELSE
                 PRINT 1100
               END IF
         C
          1000 FORMAT (1X, 'A in full form:')
          1010 FORMAT (4(3X, F7.3))
          1020 FORMAT (/1X, 'A in symmetric form (* in unused entries)')
          1030 FORMAT (/1X, 'Upper Cholesky factor:')
          1040 FORMAT (10X, 3(3X, F7.3))
          1050 FORMAT (20X, 2(3X, F7.3))
          1060 FORMAT (30X, 1(3X, F7.3))
          1070 FORMAT (1X, 'Updated Cholesky factor:')
          1080 FORMAT (/1X, 'Cosine', 3X, '  Sine')
          1090 FORMAT (1X, F6.3, 3X, F6.3)
          1100 FORMAT (/1X, 'A is not positive definite.')
         C
               END
    
    SAMPLE OUTPUT
          A in full form:
              4.000     3.000     2.000     1.000
              3.000     4.000     3.000     2.000
              2.000     3.000     4.000     3.000
              1.000     2.000     3.000     4.000
    
          A in symmetric form (* in unused entries)
              4.000     3.000     2.000     1.000
            *******     4.000     3.000     2.000
            *******   *******     4.000     3.000
            *******   *******   *******     4.000
    
          Upper Cholesky factor:
              2.000     1.500     1.000     0.500
                        1.323     1.134     0.945
                                  1.309     1.091
                                            1.291
          Updated Cholesky factor:
              2.000     0.500     1.000     1.500
                       -1.936    -1.291    -0.645
                                 -1.155    -0.577
                                           -1.000
    
          Cosine     Sine
           0.645    0.764
           0.488    0.873
           0.250    0.968
           0.000    2.000
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру