The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dgebd2 (3)
  • >> dgebd2 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dgebd2 - reduce a real general m by n matrix A to  upper  or
         lower bidiagonal form B by an orthogonal transformation
    
    SYNOPSIS
         SUBROUTINE DGEBD2( M, N, A, LDA, D,  E,  TAUQ,  TAUP,  WORK,
                   INFO )
    
         INTEGER INFO, LDA, M, N
    
         DOUBLE PRECISION A( LDA, * ), D( * ), E( *  ),  TAUP(  *  ),
                   TAUQ( * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void dgebd2(int m, int n, double *da, int  lda,  double  *d,
                   double  *e, double *tauq, double *taup, int *info)
                   ;
    
    PURPOSE
         DGEBD2 reduces a real general m by n matrix A  to  upper  or
         lower  bidiagonal form B by an orthogonal transformation: Q'
         * A * P = B.
    
         If m >= n, B is upper bidiagonal; if m < n, B is lower bidi-
         agonal.
    
    
    ARGUMENTS
         M         (input) INTEGER
                   The number of rows in the matrix A.  M >= 0.
    
         N         (input) INTEGER
                   The number of columns in the matrix A.  N >= 0.
    
         A         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDA,N)
                   On entry, the m by n general matrix to be reduced.
                   On  exit,  if  m  >= n, the diagonal and the first
                   superdiagonal are overwritten with the upper bidi-
                   agonal  matrix B; the elements below the diagonal,
                   with the  array  TAUQ,  represent  the  orthogonal
                   matrix  Q  as  a product of elementary reflectors,
                   and the elements above  the  first  superdiagonal,
                   with  the  array  TAUP,  represent  the orthogonal
                   matrix P as a product of elementary reflectors; if
                   m  < n, the diagonal and the first subdiagonal are
                   overwritten with the lower  bidiagonal  matrix  B;
                   the elements below the first subdiagonal, with the
                   array TAUQ, represent the orthogonal matrix Q as a
                   product of elementary reflectors, and the elements
                   above the diagonal, with the array TAUP, represent
                   the orthogonal matrix P as a product of elementary
                   reflectors.  See Further Details.  LDA     (input)
                   INTEGER The leading dimension of the array A.  LDA
                   >= max(1,M).
    
         D         (output)   DOUBLE   PRECISION   array,   dimension
                   (min(M,N))
                   The diagonal elements of the bidiagonal matrix  B:
                   D(i) = A(i,i).
    
         E         (output)   DOUBLE   PRECISION   array,   dimension
                   (min(M,N)-1)
                   The off-diagonal elements of the bidiagonal matrix
                   B:   if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-
                   1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
    
         TAUQ      (output)   DOUBLE   PRECISION   array    dimension
                   (min(M,N))
                   The scalar factors of  the  elementary  reflectors
                   which  represent  the  orthogonal  matrix  Q.  See
                   Further Details.  TAUP    (output)  DOUBLE  PRECI-
                   SION  array,  dimension (min(M,N)) The scalar fac-
                   tors of the elementary reflectors which  represent
                   the  orthogonal  matrix  P.  See  Further Details.
                   WORK    (workspace) DOUBLE PRECISION array, dimen-
                   sion (max(M,N))
    
         INFO      (output) INTEGER
                   = 0: successful exit.
                   < 0: if INFO = -i, the i-th argument had an  ille-
                   gal value.
    
    FURTHER DETAILS
         The matrices Q and P are represented as products of  elemen-
         tary reflectors:
    
         If m >= n,
    
            Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
    
         Each H(i) and G(i) has the form:
    
            H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
    
         where tauq and taup are real scalars, and v and u  are  real
         vectors;  v(1:i-1)  = 0, v(i) = 1, and v(i+1:m) is stored on
         exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n)  is
         stored  on exit in A(i,i+2:n); tauq is stored in TAUQ(i) and
         taup in TAUP(i).
    
         If m < n,
    
            Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
    
         Each H(i) and G(i) has the form:
    
            H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
    
         where tauq and taup are real scalars, and v and u  are  real
         vectors;  v(1:i)  = 0, v(i+1) = 1, and v(i+2:m) is stored on
         exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n)  is
         stored  on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and
         taup in TAUP(i).
    
         The contents of A on exit are illustrated by  the  following
         examples:
    
         m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
    
           (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
           (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
           (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
           (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
           (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
           (  v1  v2  v3  v4  v5 )
    
         where d and e denote diagonal and off-diagonal  elements  of
         B, vi denotes an element of the vector defining H(i), and ui
         an element of the vector defining G(i).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру