The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dgeev (3)
  • >> dgeev (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dgeev - compute for an N-by-N real  nonsymmetric  matrix  A,
         the  eigenvalues  and,  optionally,  the  left  and/or right
         eigenvectors
    
    SYNOPSIS
         SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL,
                   VR, LDVR, WORK, LWORK, INFO )
    
         CHARACTER JOBVL, JOBVR
    
         INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
    
         DOUBLE PRECISION A( LDA, * ), VL( LDVL, * ), VR( LDVR, *  ),
                   WI( * ), WORK( * ), WR( * )
    
    
    
         #include <sunperf.h>
    
         void dgeev(char jobvl, char jobvr, int n,  double  *da,  int
                   lda, double *wr, double *wi, double *vl, int ldvl,
                   double *vr, int ldvr, int *info) ;
    
    PURPOSE
         DGEEV computes for an N-by-N real nonsymmetric matrix A, the
         eigenvalues and, optionally, the left and/or right eigenvec-
         tors.
    
         The right eigenvector v(j) of A satisfies
                          A * v(j) = lambda(j) * v(j)
         where lambda(j) is its eigenvalue.
         The left eigenvector u(j) of A satisfies
                       u(j)**H * A = lambda(j) * u(j)**H
         where u(j)**H denotes the conjugate transpose of u(j).
    
         The computed eigenvectors are normalized to  have  Euclidean
         norm equal to 1 and largest component real.
    
    
    ARGUMENTS
         JOBVL     (input) CHARACTER*1
                   = 'N': left eigenvectors of A are not computed;
                   = 'V': left eigenvectors of A are computed.
    
         JOBVR     (input) CHARACTER*1
                   = 'N': right eigenvectors of A are not computed;
                   = 'V': right eigenvectors of A are computed.
    
         N         (input) INTEGER
                   The order of the matrix A. N >= 0.
    
         A         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDA,N)
                   On entry, the N-by-N matrix A.   On  exit,  A  has
                   been overwritten.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         WR        (output) DOUBLE PRECISION array, dimension (N)
                   WI      (output) DOUBLE PRECISION array, dimension
                   (N)  WR  and  WI  contain  the  real and imaginary
                   parts, respectively, of the computed  eigenvalues.
                   Complex conjugate pairs of eigenvalues appear con-
                   secutively with the eigenvalue having the positive
                   imaginary part first.
    
         VL        (output)   DOUBLE   PRECISION   array,   dimension
                   (LDVL,N)
                   If JOBVL = 'V', the  left  eigenvectors  u(j)  are
                   stored  one after another in the columns of VL, in
                   the same order as their eigenvalues.  If  JOBVL  =
                   'N', VL is not referenced.  If the j-th eigenvalue
                   is real, then u(j) = VL(:,j), the j-th  column  of
                   VL.   If  the j-th and (j+1)-st eigenvalues form a
                   complex conjugate pair,  then  u(j)  =  VL(:,j)  +
                   i*VL(:,j+1) and
                   u(j+1) = VL(:,j) - i*VL(:,j+1).
    
         LDVL      (input) INTEGER
                   The leading dimension of the array VL.  LDVL >= 1;
                   if JOBVL = 'V', LDVL >= N.
    
         VR        (output)   DOUBLE   PRECISION   array,   dimension
                   (LDVR,N)
                   If JOBVR = 'V', the right  eigenvectors  v(j)  are
                   stored  one after another in the columns of VR, in
                   the same order as their eigenvalues.  If  JOBVR  =
                   'N', VR is not referenced.  If the j-th eigenvalue
                   is real, then v(j) = VR(:,j), the j-th  column  of
                   VR.   If  the j-th and (j+1)-st eigenvalues form a
                   complex conjugate pair,  then  v(j)  =  VR(:,j)  +
                   i*VR(:,j+1) and
                   v(j+1) = VR(:,j) - i*VR(:,j+1).
    
         LDVR      (input) INTEGER
                   The leading dimension of the array VR.  LDVR >= 1;
                   if JOBVR = 'V', LDVR >= N.
    
         WORK      (workspace/output) DOUBLE PRECISION array,  dimen-
                   sion (LWORK)
                   On exit, if INFO = 0, WORK(1) returns the  optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The  dimension  of  the  array  WORK.   LWORK   >=
                   max(1,3*N),  and  if  JOBVL  = 'V' or JOBVR = 'V',
                   LWORK >= 4*N.  For good  performance,  LWORK  must
                   generally be larger.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  if INFO = i, the QR algorithm failed to com-
                   pute all the eigenvalues, and no eigenvectors have
                   been computed; elements i+1:N of WR and WI contain
                   eigenvalues which have converged.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру