The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dpotf2 (3)
  • >> dpotf2 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dpotf2 - compute the Cholesky factorization of a  real  sym-
         metric positive definite matrix A
    
    SYNOPSIS
         SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
    
         CHARACTER UPLO
    
         INTEGER INFO, LDA, N
    
         DOUBLE PRECISION A( LDA, * )
    
    
    
         #include <sunperf.h>
    
         void dpotf2(char uplo, int  n,  double  *da,  int  lda,  int
                   *info) ;
    
    PURPOSE
         DPOTF2 computes the Cholesky factorization of  a  real  sym-
         metric positive definite matrix A.
    
         The factorization has the form
            A = U' * U ,  if UPLO = 'U', or
            A = L  * L',  if UPLO = 'L',
         where U is an upper triangular matrix and L  is  lower  tri-
         angular.
    
         This is the unblocked  version  of  the  algorithm,  calling
         Level 2 BLAS.
    
    
    ARGUMENTS
         UPLO      (input) CHARACTER*1
                   Specifies whether the upper  or  lower  triangular
                   part  of the symmetric matrix A is stored.  = 'U':
                   Upper triangular
                   = 'L':  Lower triangular
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         A         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDA,N)
                   On entry, the symmetric matrix A.  If UPLO =  'U',
                   the leading n by n upper triangular part of A con-
                   tains the upper triangular part of the  matrix  A,
                   and the strictly lower triangular part of A is not
                   referenced.  If UPLO = 'L', the  leading  n  by  n
                   lower  triangular  part  of  A  contains the lower
                   triangular part of the matrix A, and the  strictly
                   upper triangular part of A is not referenced.
    
                   On exit, if INFO = 0, the factor U or L  from  the
                   Cholesky factorization A = U'*U  or A = L*L'.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         INFO      (output) INTEGER
                   = 0: successful exit
                   < 0: if INFO = -k, the k-th argument had an  ille-
                   gal value
                   > 0: if INFO = k, the leading minor of order k  is
                   not positive definite, and the factorization could
                   not be completed.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру