NAME dptsl - solve the linear system Ax = b for a symmetric posi- tive definite tridiagonal matrix A and vectors b and x. SYNOPSIS SUBROUTINE DPTSL (N, DDIAG, DOFFD, DB) SUBROUTINE SPTSL (N, SDIAG, SOFFD, SB) SUBROUTINE ZPTSL (N, ZDIAG, ZOFFD, ZB) SUBROUTINE CPTSL (N, CDIAG, COFFD, CB) #include <sunperf.h> void dptsl(int n, double *d, double *e, double *b) ; void sptsl(int n, float *d, float *e, float *b) ; void zptsl(int n, doublecomplex *d, doublecomplex *e, doub- lecomplex *b) ; void cptsl(int n, complex *d, complex *e, complex *b) ; ARGUMENTS N Order of the matrix A. N >= 0. xDIAG Main diagonal elements of A. xOFFD Off diagonal elements of A. OFFD(1) through OFFD(N*1) contains the off diagonal elements; OFFD(N) is not referenced. xB On entry, the right-hand side vector b. On exit, the solution vector x. SAMPLE PROGRAM PROGRAM TEST IMPLICIT NONE C INTEGER N PARAMETER (N = 4) C DOUBLE PRECISION B(N), SUBD(N), DIAG(N) C EXTERNAL DPTSL C C Initialize the arrays SUBD and DIAG to store the subdiagonal C and diagonal of the tridiagonal positive definite matrix A C shown below. Initialize the array B to store the right hand C side vector b shown below. C C 2 -1 6 C A = -1 2 -1 b = 12 C -1 2 -1 12 C -1 2 6 C DATA SUBD / -1.0D0, -1.0D0, -1.0D0, 8D8 / DATA DIAG / 4*2.0D0 / DATA B / 6.0D0, 1.2D1, 1.2D1, 6.0D0 / C PRINT 1000 PRINT 1010, DIAG(1), SUBD(1) PRINT 1020, SUBD(1), DIAG(2), SUBD(2) PRINT 1030, SUBD(2), DIAG(3), SUBD(3) PRINT 1040, SUBD(3), DIAG(4) PRINT 1050 PRINT 1060, B CALL DPTSL (N, DIAG, SUBD, B) PRINT 1070 PRINT 1060, B C 1000 FORMAT (1X, 'A:') 1010 FORMAT (1X, 2(2X, F4.1)) 1020 FORMAT (1X, 3(2X, F4.1)) 1030 FORMAT (1X, 6X, 3(2X, F4.1)) 1040 FORMAT (1X, 12X, 2(2X, F4.1)) 1050 FORMAT (/1X, 'b:') 1060 FORMAT (3X, F6.1) 1070 FORMAT (/1X, 'A**(-1) * b:') C END SAMPLE OUTPUT A: 2.0 -1.0 -1.0 2.0 -1.0 -1.0 2.0 -1.0 -1.0 2.0 b: 6.0 12.0 12.0 6.0 A**(-1) * b: 18.0 30.0 30.0 18.0
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |