The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dtbtrs (3)
  • >> dtbtrs (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dtbtrs - solve a triangular system of the form   A * X  =  B
         or A**T * X = B,
    
    SYNOPSIS
         SUBROUTINE DTBTRS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
                   B, LDB, INFO )
    
         CHARACTER DIAG, TRANS, UPLO
    
         INTEGER INFO, KD, LDAB, LDB, N, NRHS
    
         DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
    
    
    
         #include <sunperf.h>
    
         void dtbtrs(char uplo, char trans, char diag, int n, int kd,
                   int  nrhs,  double  *dab, int ldab, double *b, int
                   ldb, int *info) ;
    
    PURPOSE
         DTBTRS solves a triangular system of the form
    
         where A is a triangular band matrix of order N, and B is  an
         N-by  NRHS matrix.  A check is made to verify that A is non-
         singular.
    
    
    ARGUMENTS
         UPLO      (input) CHARACTER*1
                   = 'U':  A is upper triangular;
                   = 'L':  A is lower triangular.
    
         TRANS     (input) CHARACTER*1
                   Specifies the form the system of equations:
                   = 'N':  A * X = B  (No transpose)
                   = 'T':  A**T * X = B  (Transpose)
                   = 'C':  A**H * X = B  (Conjugate transpose = Tran-
                   spose)
    
         DIAG      (input) CHARACTER*1
                   = 'N':  A is non-unit triangular;
                   = 'U':  A is unit triangular.
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         KD        (input) INTEGER
                   The number of superdiagonals  or  subdiagonals  of
                   the triangular band matrix A.  KD >= 0.
    
         NRHS      (input) INTEGER
                   The number of right hand sides, i.e.,  the  number
                   of columns of the matrix B.  NRHS >= 0.
    
         AB        (input) DOUBLE PRECISION array, dimension (LDAB,N)
                   The upper  or  lower  triangular  band  matrix  A,
                   stored  in  the  first  kd+1 rows of AB.  The j-th
                   column of A is stored in the j-th  column  of  the
                   array  AB  as  follows:  if UPLO = 'U', AB(kd+1+i-
                   j,j) = A(i,j) for  max(1,j-kd)<=i<=j;  if  UPLO  =
                   'L',      AB(1+i-j,j)         =     A(i,j)     for
                   j<=i<=min(n,j+kd).  If DIAG =  'U',  the  diagonal
                   elements  of  A are not referenced and are assumed
                   to be 1.
    
         LDAB      (input) INTEGER
                   The leading dimension of the array  AB.   LDAB  >=
                   KD+1.
    
         B         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDB,NRHS)
                   On entry, the right hand side matrix B.  On  exit,
                   if INFO = 0, the solution matrix X.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(1,N).
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
                   > 0:  if INFO = i, the i-th diagonal element of  A
                   is  zero,  indicating  that the matrix is singular
                   and the solutions X have not been computed.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру