NAME schud - update an augmented Cholesky decomposition of the triangular part of an augmented QR decomposition. SYNOPSIS SUBROUTINE DCHUD (DA, LDA, N, DX, DZ, LDZ, NZ, DY, DRHO, DCOS, DSIN) SUBROUTINE SCHUD (SA, LDA, N, SX, SZ, LDZ, NZ, SY, SRHO, SCOS, SSIN) SUBROUTINE ZCHUD (ZA, LDA, N, ZX, ZZ, LDZ, NZ, ZY, DRHO, DCOS, DSIN) SUBROUTINE CCHUD (CA, LDA, N, CX, CZ, LDZ, NZ, CY, SRHO, SCOS, SSIN) #include <sunperf.h> void dchud(double *r, int ldr, int p, double *dx, double *dz, int ldz, int nz, double *dy, double *drho, double *c, double *s) ; void schud(float *r, int ldr, int p, float *sx, float *z, int ldz, int nz, float *sy, float *srho, float *sc, float *s) ; void zchud(doublecomplex *r, int ldr, int p, doublecomplex *zx, doublecomplex *zz, int ldz, int nz, doub- lecomplex *zy, double *drho, double *dc, doub- lecomplex *s) ; void cchud(complex *r, int ldr, int p, complex *cx, complex *cz, int ldz, int nz, complex *cy, float *rho, float *sc, complex *s) ; ARGUMENTS xA On entry, the upper triangular matrix A. On exit, A has been updated. The strict lower triangle of A is not referenced. LDA Leading dimension of the array A as specified in a dimension or type statement. LDA >= max(1,N). N Order of the matrix A. N >= 0. xX Row to be added to A. xZ Vectors to be updated with A. LDZ Leading dimension on the array Z as specified in a dimension or type statement. LDZ >= max(1,N). NZ Number of vectors to be updated with A. NZ >= 0. If NZ = 0 then Z, Y, and RHO are not used. xY Scalars for updating the vectors in Z. xRHO On entry, the norms of the residual vectors that are to be updated. On exit, RHO has been updated. If RHO(i) is negative on entry then it is not changed. xCOS Cosines of the transforming rotations. xSIN Sines of the transforming rotations. SAMPLE PROGRAM PROGRAM TEST IMPLICIT NONE C INTEGER LDA, N, NOPIV, NZ PARAMETER (N = 4) PARAMETER (NOPIV = 0) PARAMETER (NZ = 0) PARAMETER (LDA = N) C DOUBLE PRECISION A(LDA,N), ANULL, C(N), S(N), WORK(N), X(N) INTEGER I, ICOL, INFO, IPIVOT(N), IROW, JOB, NULL C C Initialize the arrays A and Z to store the matrices A and Z C shown below and initialize X and Y to store the vectors x and y C shown below. C C 4 3 2 1 1 C A = 3 4 3 2 x = 1 C 2 3 4 3 1 C 1 2 3 4 1 C DATA A / 4.0D0, 3*8D8, 3.0D0, 4.0D0, 2*8D8, 2.0D0, 3.0D0, 4.0D0, $ 8D8, 1.0D0, 2.0D0, 3.0D0, 4.0D0 / C PRINT 1000 PRINT 1010, A(1,1), A(1,2), A(1,3), A(1,4) PRINT 1010, A(1,2), A(2,2), A(2,3), A(2,4) PRINT 1010, A(1,3), A(2,3), A(3,3), A(3,4) PRINT 1010, (A(IROW,4), IROW = 1, N) PRINT 1020 PRINT 1010, ((A(IROW,ICOL), ICOL = 1, N), IROW = 1, N) JOB = NOPIV CALL DCHDC (A, LDA, N, WORK, IPIVOT, JOB, INFO) IF (INFO .EQ. N) THEN PRINT 1030 PRINT 1010, A(1,1), A(1,2), A(1,3), A(1,4) PRINT 1040, A(2,2), A(2,3), A(2,4) PRINT 1050, A(3,3), A(3,4) PRINT 1060, A(4,4) ANULL = 0.0D0 NULL = 1 CALL DCHUD (A, LDA, N, X, ANULL, NULL, NZ, ANULL, ANULL, C, S) PRINT 1070 PRINT 1080, (C(I), S(I), I = 1, N) ELSE PRINT 1090 END IF C 1000 FORMAT (1X, 'A in full form:') 1010 FORMAT (4(3X, F7.3)) 1020 FORMAT (/1X, 'A in symmetric form (* in unused entries)') 1030 FORMAT (/1X, 'Upper Cholesky factor:') 1040 FORMAT (10X, 3(3X, F7.3)) 1050 FORMAT (20X, 2(3X, F7.3)) 1060 FORMAT (30X, 1(3X, F7.3)) 1070 FORMAT (1X, 'Cosine', 3X, ' Sine') 1080 FORMAT (1X, F6.3, 3X, F6.3) 1090 FORMAT (/1X, 'A is not positive definite.') C END SAMPLE OUTPUT A in full form: 4.000 3.000 2.000 1.000 3.000 4.000 3.000 2.000 2.000 3.000 4.000 3.000 1.000 2.000 3.000 4.000 A in symmetric form (* in unused entries) 4.000 3.000 2.000 1.000 ******* 4.000 3.000 2.000 ******* ******* 4.000 3.000 ******* ******* ******* 4.000 Upper Cholesky factor: 2.000 1.500 1.000 0.500 1.323 1.134 0.945 1.309 1.091 1.291 Cosine Sine 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |