NAME sgbsl - solve the linear system Ax = b for a matrix A in banded storage, which has been LU-factored by xGBCO or xGBFA, and vectors b and x. SYNOPSIS SUBROUTINE DGBSL (DA, LDA, N, NSUB, NSUPER, IPIVOT, DB, JOB) SUBROUTINE SGBSL (SA, LDA, N, NSUB, NSUPER, IPIVOT, SB, JOB) SUBROUTINE ZGBSL (ZA, LDA, N, NSUB, NSUPER, IPIVOT, ZB, JOB) SUBROUTINE CGBSL (CA, LDA, N, NSUB, NSUPER, IPIVOT, CB, JOB) #include <sunperf.h> void dgbsl(double *abd, int lda, int n, int ml, int mu, int *ipivot, double *db, int job) ; void sgbsl(float *abd, int lda, int n, int ml, int mu, int *ipivot, float *sb, int job) ; void zgbsl(doublecomplex *abd, int lda, int n, int ml, int mu, int *ipivot, doublecomplex *zb, int job) ; void cgbsl(complex *abd, int lda, int n, int ml, int mu, int *ipivot, complex *cb, int job) ; ARGUMENTS xA LU factorization of the matrix A, as computed by xGBCO or xGBFA. LDA Leading dimension of the array A as specified in a dimension or type statement. LDA >= 2 * NSUB + NSUPER + 1. N Order of the matrix A. N >= 0. NSUB Number of subdiagonals of A. N-1 >= NSUB >= 0 but if N = 0 then NSUB = 0. NSUPER Number of superdiagonals of A. N-1 >= NSUPER >= 0 but if N = 0 then NSUPER = 0. IPIVOT Pivot vector as computed by xGBCO or xGBFA. xB On entry, the right-hand side vector b. On exit, the solution vector x. JOB Determines which operation this subroutine will perform: 0 solve the system Ax = b not 0 solve the linear system AHx = b Note that ATx = AHx for real matrices. SAMPLE PROGRAM PROGRAM TEST IMPLICIT NONE C INTEGER IAXEQB, LDA, LDAB, N, NDIAG, NSUB, NSUPER PARAMETER (IAXEQB = 0) PARAMETER (N = 4) PARAMETER (LDA = N) PARAMETER (NSUB = 1) PARAMETER (NSUPER = 1) PARAMETER (NDIAG = NSUB + 1 + NSUPER) PARAMETER (LDAB = 2 * NSUB + 1 + NSUPER) C DOUBLE PRECISION AB(LDAB,N), AG(LDA,N), B(N), RCOND, WORK(N) INTEGER ICOL, IPIVOT(N), IROW, IROWB, I1, I2, JOB C EXTERNAL DGBCO, DGBSL INTRINSIC MAX0, MIN0 C C Initialize the array AG to store the 4x4 matrix A with one C subdiagonal and one superdiagonal shown below. Initialize C the array B to store the vector b shown below. C C 2 -1 5 C AG = -1 2 -1 b = 5 C -1 2 -1 5 C -1 2 5 C DATA AB / 16*8D8 / DATA AG / 2.0D0, -1.0D0, 2*0D0, -1.0D0, 2.0D0, -1.0D0, $ 2*0D0, -1.0D0, 2.0D0, -1.0D0, 2*0D0, -1.0D0, $ 2.0D0 / DATA B / N*5.0D0 / C C Copy the matrix A from the array AG to the array AB. The C matrix is stored in general storage mode in AG and it will C be stored in banded storage mode in AB. The code to copy C from general to banded storage mode is taken from the C comment block in the original DGBFA by Cleve Moler. C DO 10, ICOL = 1, N I1 = MAX0 (1, ICOL - NSUPER) I2 = MIN0 (N, ICOL + NSUB) DO 10, IROW = I1, I2 IROWB = IROW - ICOL + NDIAG AB(IROWB,ICOL) = AG(IROW,ICOL) 10 CONTINUE 20 CONTINUE C C Print the initial values of the arrays. C PRINT 1000 PRINT 1010, ((AG(IROW,ICOL), ICOL = 1, N), IROW = 1, N) PRINT 1020 PRINT 1010, ((AB(IROW,ICOL), ICOL = 1, N), $ IROW = 2 * NSUB, 2 * NSUB + 1 + NSUPER) PRINT 1030 PRINT 1040, B C C Factor the matrix in banded form. C CALL DGBCO (AB, LDA, N, NSUB, NSUPER, IPIVOT, RCOND, WORK) PRINT 1050, RCOND IF ((RCOND + 1.0D0) .EQ. 1.0D0) THEN PRINT 1070 END IF JOB = IAXEQB CALL DGBSL (AB, LDA, N, NSUB, NSUPER, IPIVOT, B, JOB) PRINT 1060 PRINT 1040, B C 1000 FORMAT (1X, 'A in full form:') 1010 FORMAT (4(3X, F4.1)) 1020 FORMAT (/1X, 'A in banded form: (* in unused elements)') 1030 FORMAT (/1X, 'b:') 1040 FORMAT (3X, F4.1) 1050 FORMAT (/1X, 'Reciprocal of the condition number: ', F5.2) 1060 FORMAT (/1X, 'A**(-1) * b:') 1070 FORMAT (1X, 'A may be singular to working precision.') C END SAMPLE OUTPUT A in full form: 2.0 -1.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 -1.0 2.0 A in banded form: (* in unused elements) **** -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 -1.0 -1.0 -1.0 **** b: 5.0 5.0 5.0 5.0 Reciprocal of the condition number: 0.08 A**(-1) * b: 10.0 15.0 15.0 10.0
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |