The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

sgeev (3)
  • >> sgeev (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         sgeev - compute for an N-by-N real  nonsymmetric  matrix  A,
         the  eigenvalues  and,  optionally,  the  left  and/or right
         eigenvectors
    
    SYNOPSIS
         SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL,
                   VR, LDVR, WORK, LWORK, INFO )
    
         CHARACTER JOBVL, JOBVR
    
         INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
    
         REAL A( LDA, * ), VL( LDVL, * ), VR( LDVR, *  ),  WI(  *  ),
                   WORK( * ), WR( * )
    
    
    
         #include <sunperf.h>
    
         void sgeev(char jobvl, char jobvr, int  n,  float  *sa,  int
                   lda,  float  *wr,  float *wi, float *vl, int ldvl,
                   float *vr, int ldvr, int *info) ;
    
    PURPOSE
         SGEEV computes for an N-by-N real nonsymmetric matrix A, the
         eigenvalues and, optionally, the left and/or right eigenvec-
         tors.
    
         The right eigenvector v(j) of A satisfies
                          A * v(j) = lambda(j) * v(j)
         where lambda(j) is its eigenvalue.
         The left eigenvector u(j) of A satisfies
                       u(j)**H * A = lambda(j) * u(j)**H
         where u(j)**H denotes the conjugate transpose of u(j).
    
         The computed eigenvectors are normalized to  have  Euclidean
         norm equal to 1 and largest component real.
    
    
    ARGUMENTS
         JOBVL     (input) CHARACTER*1
                   = 'N': left eigenvectors of A are not computed;
                   = 'V': left eigenvectors of A are computed.
    
         JOBVR     (input) CHARACTER*1
                   = 'N': right eigenvectors of A are not computed;
                   = 'V': right eigenvectors of A are computed.
    
         N         (input) INTEGER
                   The order of the matrix A. N >= 0.
    
         A         (input/output) REAL array, dimension (LDA,N)
                   On entry, the N-by-N matrix A.   On  exit,  A  has
                   been overwritten.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         WR        (output) REAL array, dimension (N)
                   WI      (output) REAL array, dimension (N) WR  and
                   WI  contain  the real and imaginary parts, respec-
                   tively, of the computed eigenvalues.  Complex con-
                   jugate  pairs  of eigenvalues appear consecutively
                   with the eigenvalue having the positive  imaginary
                   part first.
    
         VL        (output) REAL array, dimension (LDVL,N)
                   If JOBVL = 'V', the  left  eigenvectors  u(j)  are
                   stored  one after another in the columns of VL, in
                   the same order as their eigenvalues.  If  JOBVL  =
                   'N', VL is not referenced.  If the j-th eigenvalue
                   is real, then u(j) = VL(:,j), the j-th  column  of
                   VL.   If  the j-th and (j+1)-st eigenvalues form a
                   complex conjugate pair,  then  u(j)  =  VL(:,j)  +
                   i*VL(:,j+1) and
                   u(j+1) = VL(:,j) - i*VL(:,j+1).
    
         LDVL      (input) INTEGER
                   The leading dimension of the array VL.  LDVL >= 1;
                   if JOBVL = 'V', LDVL >= N.
    
         VR        (output) REAL array, dimension (LDVR,N)
                   If JOBVR = 'V', the right  eigenvectors  v(j)  are
                   stored  one after another in the columns of VR, in
                   the same order as their eigenvalues.  If  JOBVR  =
                   'N', VR is not referenced.  If the j-th eigenvalue
                   is real, then v(j) = VR(:,j), the j-th  column  of
                   VR.   If  the j-th and (j+1)-st eigenvalues form a
                   complex conjugate pair,  then  v(j)  =  VR(:,j)  +
                   i*VR(:,j+1) and
                   v(j+1) = VR(:,j) - i*VR(:,j+1).
    
         LDVR      (input) INTEGER
                   The leading dimension of the array VR.  LDVR >= 1;
                   if JOBVR = 'V', LDVR >= N.
    
         WORK      (workspace/output) REAL array, dimension (LWORK)
                   On exit, if INFO = 0, WORK(1) returns the  optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The  dimension  of  the  array  WORK.   LWORK   >=
                   max(1,3*N),  and  if  JOBVL  = 'V' or JOBVR = 'V',
                   LWORK >= 4*N.  For good  performance,  LWORK  must
                   generally be larger.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  if INFO = i, the QR algorithm failed to com-
                   pute all the eigenvalues, and no eigenvectors have
                   been computed; elements i+1:N of WR and WI contain
                   eigenvalues which have converged.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру