NAME sggsvd - compute the generalized singular value decomposi- tion (GSVD) of an M-by-N real matrix A and P-by-N real matrix B SYNOPSIS SUBROUTINE SGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK, INFO ) CHARACTER JOBQ, JOBU, JOBV INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P INTEGER IWORK( * ) REAL A( LDA, * ), ALPHA( * ), B( LDB, * ), BETA( * ), Q( LDQ, * ), U( LDU, * ), V( LDV, * ), WORK( * ) #include <sunperf.h> void sggsvd(char jobu, char jobv, char jobq, int m, int n, int p, int *k, int *l, float *sa, int lda, float *sb, int ldb, float *salpha, float *sbeta, float *su, int ldu, float *v, int ldv, float *q, int ldq, int *info); PURPOSE SGGSVD computes the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B: U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ) where U, V and Q are orthogonal matrices, and Z' is the transpose of Z. Let K+L = the effective numerical rank of the matrix (A',B')', then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and D2 are M-by-(K+L) and P-by- (K+L) "diagonal" matrices and of the following structures, respectively: If M-K-L >= 0, K L D1 = K ( I 0 ) L ( 0 C ) M-K-L ( 0 0 ) K L D2 = L ( 0 S ) P-L ( 0 0 ) N-K-L K L ( 0 R ) = K ( 0 R11 R12 ) L ( 0 0 R22 ) where C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), S = diag( BETA(K+1), ... , BETA(K+L) ), C**2 + S**2 = I. R is stored in A(1:K+L,N-K-L+1:N) on exit. If M-K-L < 0, K M-K K+L-M D1 = K ( I 0 0 ) M-K ( 0 C 0 ) K M-K K+L-M D2 = M-K ( 0 S 0 ) K+L-M ( 0 0 I ) P-L ( 0 0 0 ) N-K-L K M-K K+L-M ( 0 R ) = K ( 0 R11 R12 R13 ) M-K ( 0 0 R22 R23 ) K+L-M ( 0 0 0 R33 ) where C = diag( ALPHA(K+1), ... , ALPHA(M) ), S = diag( BETA(K+1), ... , BETA(M) ), C**2 + S**2 = I. (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored ( 0 R22 R23 ) in B(M-K+1:L,N+M-K-L+1:N) on exit. The routine computes C, S, R, and optionally the orthogonal transformation matrices U, V and Q. In particular, if B is an N-by-N nonsingular matrix, then the GSVD of A and B implicitly gives the SVD of A*inv(B): A*inv(B) = U*(D1*inv(D2))*V'. If ( A',B')' has orthonormal columns, then the GSVD of A and B is also equal to the CS decomposition of A and B. Further- more, the GSVD can be used to derive the solution of the eigenvalue problem: A'*A x = lambda* B'*B x. In some literature, the GSVD of A and B is presented in the form U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 ) where U and V are orthogonal and X is nonsingular, D1 and D2 are ``diagonal''. The former GSVD form can be converted to the latter form by taking the nonsingular matrix X as X = Q*( I 0 ) ( 0 inv(R) ). ARGUMENTS JOBU (input) CHARACTER*1 = 'U': Orthogonal matrix U is computed; = 'N': U is not computed. JOBV (input) CHARACTER*1 = 'V': Orthogonal matrix V is computed; = 'N': V is not computed. JOBQ (input) CHARACTER*1 = 'Q': Orthogonal matrix Q is computed; = 'N': Q is not computed. M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. P (input) INTEGER The number of rows of the matrix B. P >= 0. K (output) INTEGER L (output) INTEGER On exit, K and L specify the dimension of the subblocks described in the Purpose section. K + L = effective numerical rank of (A',B')'. A (input/output) REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A con- tains the triangular matrix R, or part of R. See Purpose for details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) REAL array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B con- tains the triangular matrix R if M-K-L < 0. See Purpose for details. LDB (input) INTEGER The leading dimension of the array B. LDA >= max(1,P). ALPHA (output) REAL array, dimension (N) BETA (output) REAL array, dimension (N) On exit, ALPHA and BETA contain the generalized singular value pairs of A and B; ALPHA(1:K) = 1, BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L) = C, BETA(K+1:K+L) = S, or if M-K-L < 0, ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 BETA(K+1:M) =S, BETA(M+1:K+L) =1 and ALPHA(K+L+1:N) = 0 BETA(K+L+1:N) = 0 U (output) REAL array, dimension (LDU,M) If JOBU = 'U', U contains the M-by-M orthogonal matrix U. If JOBU = 'N', U is not referenced. LDU (input) INTEGER The leading dimension of the array U. LDU >= max(1,M) if JOBU = 'U'; LDU >= 1 otherwise. V (output) REAL array, dimension (LDV,P) If JOBV = 'V', V contains the P-by-P orthogonal matrix V. If JOBV = 'N', V is not referenced. LDV (input) INTEGER The leading dimension of the array V. LDV >= max(1,P) if JOBV = 'V'; LDV >= 1 otherwise. Q (output) REAL array, dimension (LDQ,N) If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. If JOBQ = 'N', Q is not referenced. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise. WORK (workspace) REAL array, dimension (max(3*N,M,P)+N) IWORK (workspace) INTEGER array, dimension (N) INFO (output)INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an ille- gal value. > 0: if INFO = 1, the Jacobi-type procedure failed to converge. For further details, see sub- routine STGSJA. PARAMETERS TOLA REAL TOLB REAL TOLA and TOLB are the thresholds to determine the effective rank of (A',B')'. Gen- erally, they are set to TOLA = MAX(M,N)*norm(A)*MACHEPS, TOLB = MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and TOLB may affect the size of backward errors of the decomposition.
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |