The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

slaed1 (3)
  • >> slaed1 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         slaed1 - compute  the  updated  eigensystem  of  a  diagonal
         matrix after modification by a rank-one symmetric matrix
    
    SYNOPSIS
         SUBROUTINE SLAED1( N, D, Q, LDQ, INDXQ, RHO,  CUTPNT,  WORK,
                   IWORK, INFO )
    
         INTEGER CUTPNT, INFO, LDQ, N
    
         REAL RHO
    
         INTEGER INDXQ( * ), IWORK( * )
    
         REAL D( * ), Q( LDQ, * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void slaed1(int n, float *d, float *q, int ldq, int  *indxq,
                   float srho, int cutpnt, int *info) ;
    
    PURPOSE
         SLAED1 computes the updated eigensystem of a diagonal matrix
         after  modification  by  a  rank-one symmetric matrix.  This
         routine is used only for the eigenproblem which requires all
         eigenvalues   and  eigenvectors  of  a  tridiagonal  matrix.
         SLAED7 handles the case in which eigenvalues only or  eigen-
         values  and  eigenvectors  of a full symmetric matrix (which
         was reduced to tridiagonal form) are desired.
    
           T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) *  D(out)
         * Q'(out)
    
         where Z = Q'u, u is a vector of length N with  ones  in  the
         CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
    
         The eigenvectors of the original matrix are stored in Q, and
         the  eigenvalues  are in D.  The algorithm consists of three
         stages:
    
         The first stage consists of deflating the size of the  prob-
         lem  when  there  are  multiple eigenvalues or if there is a
         zero in the Z vector.  For each such occurence the dimension
         of  the  secular  equation  problem is reduced by one.  This
         stage is performed by the routine SLAED2.
    
         The second stage consists of calculating the updated  eigen-
         values.  This  is  done  by finding the roots of the secular
         equation via the routine SLAED4 (as called by SLAED3).  This
         routine  also  calculates  the  eigenvectors  of the current
         problem.
    
         The final stage consists of computing the updated  eigenvec-
         tors  directly using the updated eigenvalues.  The eigenvec-
         tors for the current problem are multiplied with the  eigen-
         vectors from the overall problem.
    
    
    ARGUMENTS
         N         (input) INTEGER
                   The dimension of the symmetric tridiagonal matrix.
                   N >= 0.
    
         D         (input/output) REAL array, dimension (N)
                   On entry, the eigenvalues of the  rank-1-perturbed
                   matrix.   On exit, the eigenvalues of the repaired
                   matrix.
    
         Q         (input/output) REAL array, dimension (LDQ,N)
                   On entry, the eigenvectors of the rank-1-perturbed
                   matrix.  On exit, the eigenvectors of the repaired
                   tridiagonal matrix.
    
         LDQ       (input) INTEGER
                   The leading dimension of  the  array  Q.   LDQ  >=
                   max(1,N).
    
         INDXQ     (input/output) INTEGER array, dimension (N)
                   On entry, the permutation which  separately  sorts
                   the two subproblems in D into ascending order.  On
                   exit, the permutation which will  reintegrate  the
                   subproblems back into sorted order, i.e. D( INDXQ(
                   I = 1, N ) ) will be in ascending order.
    
         RHO       (input) REAL
                   The subdiagonal entry used to  create  the  rank-1
                   modification.
    
                   CUTPNT (input) INTEGER The location  of  the  last
                   eigenvalue in the leading sub-matrix.  min(1,N) <=
                   CUTPNT <= N.
    
         WORK      (workspace) REAL array, dimension (3*N+2*N**2)
    
         IWORK     (workspace) INTEGER array, dimension (4*N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  if INFO = 1, an eigenvalue did not converge
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру