The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

sormlq (3)
  • >> sormlq (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         sormlq - overwrite the general real  M-by-N  matrix  C  with
         SIDE = 'L' SIDE = 'R' TRANS = 'N'
    
    SYNOPSIS
         SUBROUTINE SORMLQ( SIDE, TRANS, M, N, K,  A,  LDA,  TAU,  C,
                   LDC, WORK, LWORK, INFO )
    
         CHARACTER SIDE, TRANS
    
         INTEGER INFO, K, LDA, LDC, LWORK, M, N
    
         REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( LWORK )
    
    
    
         #include <sunperf.h>
    
         void sormlq(char side, char trans, int  m,  int  n,  int  k,
                   float  *sa,  int  lda,  float *tau, float *sc, int
                   ldc, int *info) ;
    
    PURPOSE
         SORMLQ overwrites the general  real  M-by-N  matrix  C  with
         TRANS = 'T':      Q**T * C       C * Q**T
    
         where Q is a real orthogonal matrix defined as  the  product
         of k elementary reflectors
    
               Q = H(k) . . . H(2) H(1)
    
         as returned by SGELQF. Q is of order M if SIDE = 'L' and  of
         order N if SIDE = 'R'.
    
    
    ARGUMENTS
         SIDE      (input) CHARACTER*1
                   = 'L': apply Q or Q**T from the Left;
                   = 'R': apply Q or Q**T from the Right.
    
         TRANS     (input) CHARACTER*1
                   = 'N':  No transpose, apply Q;
                   = 'T':  Transpose, apply Q**T.
    
         M         (input) INTEGER
                   The number of rows of the matrix C. M >= 0.
    
         N         (input) INTEGER
                   The number of columns of the matrix C. N >= 0.
    
         K         (input) INTEGER
                   The number of elementary reflectors whose  product
                   defines the matrix Q.  If SIDE = 'L', M >= K >= 0;
                   if SIDE = 'R', N >= K >= 0.
    
         A         (input) REAL array, dimension
                   (LDA,M) if SIDE = 'L', (LDA,N) if SIDE =  'R'  The
                   i-th row must contain the vector which defines the
                   elementary reflector H(i), for i =  1,2,...,k,  as
                   returned  by  SGELQF  in  the  first k rows of its
                   array argument A.  A is modified  by  the  routine
                   but restored on exit.
    
         LDA       (input) INTEGER
                   The leading dimension  of  the  array  A.  LDA  >=
                   max(1,K).
    
         TAU       (input) REAL array, dimension (K)
                   TAU(i) must contain the scalar factor of the  ele-
                   mentary reflector H(i), as returned by SGELQF.
    
         C         (input/output) REAL array, dimension (LDC,N)
                   On entry, the M-by-N matrix  C.   On  exit,  C  is
                   overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
    
         LDC       (input) INTEGER
                   The leading dimension  of  the  array  C.  LDC  >=
                   max(1,M).
    
         WORK      (workspace/output) REAL array, dimension (LWORK)
                   On exit, if INFO = 0, WORK(1) returns the  optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The dimension of the array WORK.  If SIDE  =  'L',
                   LWORK  >=  max(1,N);  if  SIDE  =  'R',  LWORK  >=
                   max(1,M).  For optimum performance LWORK  >=  N*NB
                   if  SIDE  =  'L', and LWORK >= M*NB if SIDE = 'R',
                   where NB is the optimal blocksize.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру