The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

spprfs (3)
  • >> spprfs (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         spprfs - improve the computed solution to a system of linear
         equations  when the coefficient matrix is symmetric positive
         definite and packed, and provides error bounds and  backward
         error estimates for the solution
    
    SYNOPSIS
         SUBROUTINE SPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB,  X,  LDX,
                   FERR, BERR, WORK, IWORK, INFO )
    
         CHARACTER UPLO
    
         INTEGER INFO, LDB, LDX, N, NRHS
    
         INTEGER IWORK( * )
    
         REAL AFP( * ), AP( * ), B( LDB, * ), BERR( * ), FERR(  *  ),
                   WORK( * ), X( LDX, * )
    
    
    
         #include <sunperf.h>
    
         void spprfs(char uplo, int n, int nrhs,  float  *sap,  float
                   *afp,  float  *sb,  int  ldb,  float *sx, int ldx,
                   float *ferr, float *berr, int *info) ;
    
    PURPOSE
         SPPRFS improves the computed solution to a system of  linear
         equations  when the coefficient matrix is symmetric positive
         definite and packed, and provides error bounds and  backward
         error estimates for the solution.
    
    
    ARGUMENTS
         UPLO      (input) CHARACTER*1
                   = 'U':  Upper triangle of A is stored;
                   = 'L':  Lower triangle of A is stored.
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         NRHS      (input) INTEGER
                   The number of right hand sides, i.e.,  the  number
                   of columns of the matrices B and X.  NRHS >= 0.
    
         AP        (input) REAL array, dimension (N*(N+1)/2)
                   The upper  or  lower  triangle  of  the  symmetric
                   matrix  A,  packed  columnwise  in a linear array.
                   The j-th column of A is stored in the array AP  as
                   follows:   if  UPLO  =  'U',  AP(i  + (j-1)*j/2) =
                   A(i,j) for 1<=i<=j; if UPLO  =  'L',  AP(i  +  (j-
                   1)*(2n-j)/2) = A(i,j) for j<=i<=n.
    
         AFP       (input) REAL array, dimension (N*(N+1)/2)
                   The triangular factor U or  L  from  the  Cholesky
                   factorization  A  =  U**T*U or A = L*L**T, as com-
                   puted by SPPTRF/CPPTRF,  packed  columnwise  in  a
                   linear array in the same format as A (see AP).
    
         B         (input) REAL array, dimension (LDB,NRHS)
                   The right hand side matrix B.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(1,N).
    
         X         (input/output) REAL array, dimension (LDX,NRHS)
                   On entry, the solution matrix X,  as  computed  by
                   SPPTRS.  On exit, the improved solution matrix X.
    
         LDX       (input) INTEGER
                   The leading dimension of  the  array  X.   LDX  >=
                   max(1,N).
    
         FERR      (output) REAL array, dimension (NRHS)
                   The estimated forward error bound for  each  solu-
                   tion  vector X(j) (the j-th column of the solution
                   matrix  X).   If  XTRUE  is  the   true   solution
                   corresponding  to  X(j),  FERR(j)  is an estimated
                   upper bound for the magnitude of the largest  ele-
                   ment in (X(j) - XTRUE) divided by the magnitude of
                   the largest element in X(j).  The estimate  is  as
                   reliable  as the estimate for RCOND, and is almost
                   always a slight overestimate of the true error.
    
         BERR      (output) REAL array, dimension (NRHS)
                   The componentwise relative backward error of  each
                   solution  vector X(j) (i.e., the smallest relative
                   change in any element of A or B that makes X(j) an
                   exact solution).
    
         WORK      (workspace) REAL array, dimension (3*N)
    
         IWORK     (workspace) INTEGER array, dimension (N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру