NAME spttrs - solve a system of linear equations A * X = B with a symmetric positive definite tridiagonal matrix A using the factorization A = L*D*L**T or A = U**T*D*U computed by SPTTRF SYNOPSIS SUBROUTINE SPTTRS( N, NRHS, D, E, B, LDB, INFO ) INTEGER INFO, LDB, N, NRHS REAL B( LDB, * ), D( * ), E( * ) #include <sunperf.h> void spttrs(int n, int nrhs, float *d, float *e, float *sb, int ldb, int *info) ; PURPOSE SPTTRS solves a system of linear equations A * X = B with a symmetric positive definite tridiagonal matrix A using the factorization A = L*D*L**T or A = U**T*D*U computed by SPTTRF. (The two forms are equivalent if A is real.) ARGUMENTS N (input) INTEGER The order of the tridiagonal matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. D (input) REAL array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization computed by SPTTRF. E (input) REAL array, dimension (N-1) The (n-1) off-diagonal elements of the unit bidi- agonal factor U or L from the factorization com- puted by SPTTRF. B (input/output) REAL array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an ille- gal value
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |