The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

sqrdc (3)
  • >> sqrdc (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         sqrdc - compute the QR factorization of a general matrix  A.
         It  is  typical  to  follow  a  call to xQRDC with a call to
         xQRSL to solve Ax = b or to xPODI to compute the determinant
         of A.
    
    SYNOPSIS
         SUBROUTINE DQRDC (DA, LDA, N, P, DQRAUX, IPIVOT, DWORK, JOB)
    
         SUBROUTINE SQRDC (SA, LDA, N, P, SQRAUX, IPIVOT, SWORK, JOB)
    
         SUBROUTINE ZQRDC (ZA, LDA, N, P, ZQRAUX, IPIVOT, ZWORK, JOB)
    
         SUBROUTINE CQRDC (CA, LDA, N, P, CQRAUX, IPIVOT, CWORK, JOB)
    
    
    
         #include <sunperf.h>
    
         void dqrdc(double *dx, int ldx, int n, int p, double *qraux,
                   int *jpivot, int job) ;
    
         void sqrdc(float *sx, int ldx, int n, int p,  float  *qraux,
                   int *jpivot, int job) ;
    
         void zqrdc(doublecomplex *zx, int ldx, int n, int  p,  doub-
                   lecomplex *qraux, int *jpivot, int job) ;
    
         void cqrdc(complex *cx, int  ldx,  int  n,  int  p,  complex
                   *qraux, int *jpivot, int job) ;
    
    ARGUMENTS
         xA        On entry, the matrix A.  On exit, the upper trian-
                   gle  of  A  contains  the  matrix R and the strict
                   lower triangle of A contains information that will
                   allow  construction  of the matrix Q.  If pivoting
                   was requested, A contains the factorization of the
                   original   matrix  A  permuted  by  the  requested
                   pivots.
    
         LDA       Leading dimension of the array A as specified in a
                   dimension or type statement.  LDA >= max(1,N).
    
         N         Number of rows in the matrix A.  N >= 0.
    
         P         Number of columns in the matrix A.  P >= 0.
    
         xQRAUX    On exit, contains  information  required  to  con-
                   struct the orthogonal matrix Q.
    
         IPIVOT    If JOB selected no pivoting, then  IPIVOT  is  not
                   referenced.   If  JOB  selected  pivoting, then on
                   entry to the subroutines, IPIVOT contains integers
                   representing array indices that control the selec-
                   tion of pivot elements  from  the  diagonal  of  A
                   according to the system below:
                        IPIVOT(k) > 0  A(k,k) is an initial element.
                        IPIVOT(k) = 0  A(k,k) is a free element.
                        IPIVOT(k) < 0  A(k,k) is a final element.
                   Before the decomposition  is  computed,  symmetric
                   row  and column interchanges are used to move ini-
                   tial elements to the beginning of A and final ele-
                   ments  to  the  end of A.  During the computation,
                   symmetric row and column interchanges are used  to
                   move  the  largest remaining free diagonal element
                   into the pivot position.  On exit, IPIVOT(k)  con-
                   tains  the index of the diagonal element of A that
                   was moved into the kth position.
    
         xWORK     Scratch array with a dimension of N.  WORK is  not
                   referenced if JOB = 0.
    
         JOB       Determines how the factorization is done:
                        0    with no pivoting
                        not 0     with pivoting
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER           IDOB, IDORSD, IDOXB, LDA, N, NCOLA, NOPIV, NROWA
               PARAMETER        (IDOB = 100)
               PARAMETER        (IDORSD = 10)
               PARAMETER        (IDOXB = 1)
               PARAMETER        (N = 3)
               PARAMETER        (LDA = N)
               PARAMETER        (NCOLA = 2)
               PARAMETER        (NOPIV = 0)
               PARAMETER        (NROWA = N)
         C
               DOUBLE PRECISION  A(LDA,NCOLA), B(NCOLA), NULL(N), QRAUX(N)
               DOUBLE PRECISION  RESID(N), WORK(N), Y(N)
               INTEGER           ICOL, INFO, IROW, JOB, JPIVOT
         C
               EXTERNAL          DQRDC, DQRSL
         C
         C      Initialize the array A to store the matrix A shown below.
         C      Initialize the array Y to store the vector y shown below.
         C
         C          1  1         1
         C      A = 1  0    y =  0
         C          0  1        -5
         C
               DATA A / 1.0D0, 1.0D0, 0.0D0, 1.0D0, 0.0D0, 1.0D0 /
               DATA Y / 1.0D0, 0.0D0, -5.0D0 /
         C
               PRINT 1000
               PRINT 1010, ((A(IROW,ICOL), ICOL = 1, NCOLA), IROW = 1, NROWA)
               PRINT 1020
               PRINT 1030, Y
               JOB = NOPIV
               CALL DQRDC (A, LDA, NROWA, NCOLA, QRAUX, JPIVOT, WORK, JOB)
               JOB = IDOB + IDORSD + IDOXB
               CALL DQRSL (A, LDA, NROWA, NCOLA, QRAUX, Y, NULL, NULL, B,
              $            RESID, NULL, JOB, INFO)
               IF (INFO .EQ. 0) THEN
                 PRINT 1040
                 PRINT 1050, B
                 PRINT 1060
                 PRINT 1050, RESID
               ELSE
                 PRINT 1070
               END IF
         C
          1000 FORMAT (1X, 'A:')
          1010 FORMAT (2(3X, F4.1))
          1020 FORMAT (/1X, 'y:')
          1030 FORMAT (3X, F4.1)
          1040 FORMAT (/1X, 'Least squares solution:')
          1050 FORMAT (3X, F4.1)
          1060 FORMAT (/1X, 'Residual:')
          1070 FORMAT (1X, 'A is singular.')
         C
               END
    
    SAMPLE OUTPUT
          A:
             1.0    1.0
             1.0    0.0
             0.0    1.0
    
          y:
             1.0
             0.0
            -5.0
    
          Least squares solution:
             2.0
            -3.0
    
          Residual:
             2.0
            -2.0
            -2.0
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру