NAME zgbco - compute the LU factorization and condition number of a general matrix A in banded storage. If the condition number is not needed then xGBFA is slightly faster. It is typical to follow a call to xGBCO with a call to xGBSL to solve Ax = b or to xGBDI to compute the determinant of A. SYNOPSIS SUBROUTINE DGBCO (DA, LDA, N, NSUB, NSUPER, IPIVOT, DRCOND, DWORK) SUBROUTINE SGBCO (SA, LDA, N, NSUB, NSUPER, IPIVOT, SRCOND, SWORK) SUBROUTINE ZGBCO (ZA, LDA, N, NSUB, NSUPER, IPIVOT, DRCOND, ZWORK) SUBROUTINE CGBCO (CA, LDA, N, NSUB, NSUPER, IPIVOT, SRCOND, CWORK) #include <sunperf.h> void zgbco(doublecomplex *abd, int lda, int n, int ml, int mu, int *ipivot, double *rcond) ; void dgbco(double *abd, int lda, int n, int ml, int mu, int *ipivot, double *rcond) ; void sgbco(float *abd, int lda, int n, int ml, int mu, int *ipivot, float *rcond) ; void zgbco(doublecomplex *abd, int lda, int n, int ml, int mu, int *ipivot, double *rcond) ; void cgbco(complex *abd, int lda, int n, int ml, int mu, int *ipivot, float *rcond) ; ARGUMENTS xA On entry, the matrix A. On exit, an LU factoriza- tion of the matrix A. LDA Leading dimension of the array A as specified in a dimension or type statement. LDA * 2 * NSUB + NSUPER + 1. N Order of the matrix A. N >= 0. NSUB Number of subdiagonals of A. N-1 >= NSUB >= 0 but if N = 0 then NSUB = 0. NSUPER Number of superdiagonals of A. N-1 >= NSUPER >= 0 but if N = 0 then NSUPER = 0. IPIVOT On exit, a vector of pivot indices. xRCOND On exit, an estimate of the reciprocal condition number of A. 0.0 <= RCOND <= 1.0. As the value of RCOND gets smaller, operations with A such as solving Ax = b may become less stable. If RCOND satisfies RCOND + 1.0 = 1.0 then A may be singular to working precision. xWORK Scratch array with a dimension of N. SAMPLE PROGRAM PROGRAM TEST IMPLICIT NONE C INTEGER IAXEQB, LDA, LDAB, N, NDIAG, NSUB, NSUPER PARAMETER (IAXEQB = 0) PARAMETER (N = 4) PARAMETER (LDA = N) PARAMETER (NSUB = 1) PARAMETER (NSUPER = 1) PARAMETER (NDIAG = NSUB + 1 + NSUPER) PARAMETER (LDAB = 2 * NSUB + 1 + NSUPER) C DOUBLE PRECISION AB(LDAB,N), AG(LDA,N), B(N), RCOND, WORK(N) INTEGER ICOL, IPIVOT(N), IROW, IROWB, I1, I2, JOB C EXTERNAL DGBCO, DGBSL INTRINSIC MAX0, MIN0 C C Initialize the array AG to store the 4x4 matrix A with one C subdiagonal and one superdiagonal shown below. Initialize C the array B to store the vector b shown below. C C 2 -1 5 C AG = -1 2 -1 b = 5 C -1 2 -1 5 C -1 2 5 C DATA AB / 16*8D8 / DATA AG / 2.0D0, -1.0D0, 2*0D0, -1.0D0, 2.0D0, -1.0D0, $ 2*0D0, -1.0D0, 2.0D0, -1.0D0, 2*0D0, -1.0D0, $ 2.0D0 / DATA B / N*5.0D0 / C C Copy the matrix A from the array AG to the array AB. The C matrix is stored in general storage mode in AG and it will C be stored in banded storage mode in AB. The code to copy C from general to banded storage mode is taken from the C comment block in the original DGBFA by Cleve Moler. C DO 10, ICOL = 1, N I1 = MAX0 (1, ICOL - NSUPER) I2 = MIN0 (N, ICOL + NSUB) DO 10, IROW = I1, I2 IROWB = IROW - ICOL + NDIAG AB(IROWB,ICOL) = AG(IROW,ICOL) 10 CONTINUE 20 CONTINUE C C Print the initial values of the arrays. C PRINT 1000 PRINT 1010, ((AG(IROW,ICOL), ICOL = 1, N), IROW = 1, N) PRINT 1020 PRINT 1010, ((AB(IROW,ICOL), ICOL = 1, N), $ IROW = 2 * NSUB, 2 * NSUB + 1 + NSUPER) PRINT 1030 PRINT 1040, B C C Factor the matrix in banded form. C CALL DGBCO (AB, LDA, N, NSUB, NSUPER, IPIVOT, RCOND, WORK) PRINT 1050, RCOND IF ((RCOND + 1.0D0) .EQ. 1.0D0) THEN PRINT 1070 END IF JOB = IAXEQB CALL DGBSL (AB, LDA, N, NSUB, NSUPER, IPIVOT, B, JOB) PRINT 1060 PRINT 1040, B C 1000 FORMAT (1X, 'A in full form:') 1010 FORMAT (4(3X, F4.1)) 1020 FORMAT (/1X, 'A in banded form: (* in unused elements)') 1030 FORMAT (/1X, 'b:') 1040 FORMAT (3X, F4.1) 1050 FORMAT (/1X, 'Reciprocal of the condition number: ', F5.2) 1060 FORMAT (/1X, 'A**(-1) * b:') 1070 FORMAT (1X, 'A may be singular to working precision.') C END SAMPLE OUTPUT A in full form: 2.0 -1.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 -1.0 2.0 A in banded form: (* in unused elements) **** -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 -1.0 -1.0 -1.0 **** b: 5.0 5.0 5.0 5.0 Reciprocal of the condition number: 0.08 A**(-1) * b: 10.0 15.0 15.0 10.0
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |