The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zgegs (3)
  • >> zgegs (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zgegs - compute for a pair of  N-by-N  complex  nonsymmetric
         matrices A,
    
    SYNOPSIS
         SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB,  ALPHA,
                   BETA,  VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
                   INFO )
    
         CHARACTER JOBVSL, JOBVSR
    
         INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
    
         DOUBLE PRECISION RWORK( * )
    
         COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), BETA( *  ),
                   VSL( LDVSL, * ), VSR( LDVSR, * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void zgegs(char jobvsl, char jobvsr,  int  n,  doublecomplex
                   *za,  int  lda,  doublecomplex *zb, int ldb, doub-
                   lecomplex *zalpha,  doublecomplex  *  beta,  doub-
                   lecomplex *vsl, int ldvsl, doublecomplex *vsr, int
                   ldvsr, int *info) ;
    
    PURPOSE
         DGEGS computes for a pair  of  N-by-N  complex  nonsymmetric
         matrices  A,  B:  the generalized eigenvalues (alpha, beta),
         the complex Schur form (A, B), and  optionally  left  and/or
         right Schur vectors (VSL and VSR).
    
         (If only the generalized eigenvalues  are  needed,  use  the
         driver ZGEGV instead.)
    
         A generalized eigenvalue for a pair of  matrices  (A,B)  is,
         roughly  speaking,  a  scalar  w or a ratio  alpha/beta = w,
         such that  A - w*B is singular.  It is  usually  represented
         as the pair (alpha,beta), as there is a reasonable interpre-
         tation for beta=0, and even for both  being  zero.   A  good
         beginning  reference  is the book, "Matrix Computations", by
         G. Golub & C. van Loan (Johns Hopkins U. Press)
    
         The (generalized) Schur form of a pair of  matrices  is  the
         result  of multiplying both matrices on the left by one uni-
         tary matrix and both on the right by another unitary matrix,
         these  two  unitary matrices being chosen so as to bring the
         pair of matrices into upper triangular form with the  diago-
         nal  elements  of B being non-negative real numbers (this is
         also called complex Schur form.)
         The left and right Schur vectors are the columns of VSL  and
         VSR,  respectively,  where  VSL  and  VSR  are  the  unitary
         matrices
         which reduce A and B to Schur form:
    
         Schur form of (A,B) = ( (VSL)**H A (VSR), (VSL)**H B (VSR) )
    
    
    ARGUMENTS
         JOBVSL    (input) CHARACTER*1
                   = 'N':  do not compute the left Schur vectors;
                   = 'V':  compute the left Schur vectors.
    
         JOBVSR    (input) CHARACTER*1
                   = 'N':  do not compute the right Schur vectors;
                   = 'V':  compute the right Schur vectors.
    
         N         (input) INTEGER
                   The order of the matrices A, B, VSL, and  VSR.   N
                   >= 0.
    
         A         (input/output) COMPLEX*16 array,  dimension  (LDA,
                   N)
                   On entry, the first of the pair of matrices  whose
                   generalized  eigenvalues  and  (optionally)  Schur
                   vectors are to be computed.  On exit, the general-
                   ized Schur form of A.
    
         LDA       (input) INTEGER
                   The leading dimension of A.  LDA >= max(1,N).
    
         B         (input/output) COMPLEX*16 array,  dimension  (LDB,
                   N)
                   On entry, the second of the pair of matrices whose
                   generalized  eigenvalues  and  (optionally)  Schur
                   vectors are to be computed.  On exit, the general-
                   ized Schur form of B.
    
         LDB       (input) INTEGER
                   The leading dimension of B.  LDB >= max(1,N).
    
         ALPHA     (output) COMPLEX*16 array, dimension (N)
                   BETA    (output) COMPLEX*16 array,  dimension  (N)
                   On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
                   generalized eigenvalues.  ALPHA(j), j=1,...,N  and
                   BETA(j),  j=1,...,N  are the diagonals of the com-
                   plex  Schur  form  (A,B)  output  by  ZGEGS.   The
                   BETA(j) will be non-negative real.
    
                   Note: the quotients  ALPHA(j)/BETA(j)  may  easily
                   over-  or underflow, and BETA(j) may even be zero.
                   Thus, the user should avoid naively computing  the
                   ratio  alpha/beta.   However, ALPHA will be always
                   less than and usually comparable with  norm(A)  in
                   magnitude,  and  BETA always less than and usually
                   comparable with norm(B).
    
         VSL       (output) COMPLEX*16 array, dimension (LDVSL,N)
                   If JOBVSL = 'V', VSL will contain the  left  Schur
                   vectors.   (See "Purpose", above.)  Not referenced
                   if JOBVSL = 'N'.
    
         LDVSL     (input) INTEGER
                   The leading dimension of the matrix VSL. LDVSL  >=
                   1, and if JOBVSL = 'V', LDVSL >= N.
    
         VSR       (output) COMPLEX*16 array, dimension (LDVSR,N)
                   If JOBVSR = 'V', VSR will contain the right  Schur
                   vectors.   (See "Purpose", above.)  Not referenced
                   if JOBVSR = 'N'.
    
         LDVSR     (input) INTEGER
                   The leading dimension of the matrix VSR. LDVSR  >=
                   1, and if JOBVSR = 'V', LDVSR >= N.
    
         WORK      (workspace/output)  COMPLEX*16  array,   dimension
                   (LWORK)
                   On exit, if INFO = 0, WORK(1) returns the  optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The  dimension  of  the  array  WORK.   LWORK   >=
                   max(1,2*N).  For good performance, LWORK must gen-
                   erally be larger.  To compute the optimal value of
                   LWORK,  call ILAENV to get blocksizes (for ZGEQRF,
                   ZUNMQR, and CUNGQR.)  Then compute:  NB  -- MAX of
                   the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR; the
                   optimal LWORK is N*(NB+1).
    
         RWORK     (workspace)  DOUBLE  PRECISION  array,   dimension
                   (3*N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   =1,...,N:  The QZ iteration failed.  (A,B) are not
                   in  Schur form, but ALPHA(j) and BETA(j) should be
                   correct for j=INFO+1,...,N.   >  N:   errors  that
                   usually indicate LAPACK problems:
                   =N+1: error return from ZGGBAL
                   =N+2: error return from ZGEQRF
                   =N+3: error return from ZUNMQR
                   =N+4: error return from ZUNGQR
                   =N+5: error return from ZGGHRD
                   =N+6: error return from ZHGEQZ (other than  failed
                   iteration) =N+7: error return from ZGGBAK (comput-
                   ing VSL)
                   =N+8: error return from ZGGBAK (computing VSR)
                   =N+9: error return from ZLASCL (various places)
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру