The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zhbev (3)
  • >> zhbev (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zhbev - compute all the eigenvalues and, optionally,  eigen-
         vectors of a complex Hermitian band matrix A
    
    SYNOPSIS
         SUBROUTINE ZHBEV( JOBZ, UPLO, N, KD, AB, LDAB,  W,  Z,  LDZ,
                   WORK, RWORK, INFO )
    
         CHARACTER JOBZ, UPLO
    
         INTEGER INFO, KD, LDAB, LDZ, N
    
         DOUBLE PRECISION RWORK( * ), W( * )
    
         COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * )
    
    
    
         #include <sunperf.h>
    
         void zhbev(char jobz, char uplo, int n, int  kd,  doublecom-
                   plex *zab, int ldab, double *w, doublecomplex *zz,
                   int ldz, int *info) ;
    
    PURPOSE
         ZHBEV computes all the eigenvalues and,  optionally,  eigen-
         vectors of a complex Hermitian band matrix A.
    
    
    ARGUMENTS
         JOBZ      (input) CHARACTER*1
                   = 'N':  Compute eigenvalues only;
                   = 'V':  Compute eigenvalues and eigenvectors.
    
         UPLO      (input) CHARACTER*1
                   = 'U':  Upper triangle of A is stored;
                   = 'L':  Lower triangle of A is stored.
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         KD        (input) INTEGER
                   The number of superdiagonals of the  matrix  A  if
                   UPLO  = 'U', or the number of subdiagonals if UPLO
                   = 'L'.  KD >= 0.
    
         AB        (input/output) COMPLEX*16 array, dimension  (LDAB,
                   N)
                   On entry, the upper or lower triangle of the  Her-
                   mitian  band  matrix  A,  stored in the first KD+1
                   rows of the array.  The j-th column of A is stored
                   in the j-th column of the array AB as follows:  if
                   UPLO = 'U', AB(kd+1+i-j,j) = A(i,j)  for  max(1,j-
                   kd)<=i<=j;  if UPLO = 'L', AB(1+i-j,j)    = A(i,j)
                   for j<=i<=min(n,j+kd).
    
                   On exit, AB is  overwritten  by  values  generated
                   during the reduction to tridiagonal form.  If UPLO
                   = 'U', the first superdiagonal and the diagonal of
                   the  tridiagonal  matrix T are returned in rows KD
                   and KD+1 of AB, and if UPLO =  'L',  the  diagonal
                   and  first  subdiagonal  of  T are returned in the
                   first two rows of AB.
    
         LDAB      (input) INTEGER
                   The leading dimension of the array AB.  LDAB >= KD
                   + 1.
    
         W         (output) DOUBLE PRECISION array, dimension (N)
                   If INFO = 0, the eigenvalues in ascending order.
    
         Z         (output) COMPLEX*16 array, dimension (LDZ, N)
                   If JOBZ = 'V', then if INFO = 0,  Z  contains  the
                   orthonormal eigenvectors of the matrix A, with the
                   i-th column of Z holding the  eigenvector  associ-
                   ated  with  W(i).   If  JOBZ  = 'N', then Z is not
                   referenced.
    
         LDZ       (input) INTEGER
                   The leading dimension of the array Z.  LDZ  >=  1,
                   and if JOBZ = 'V', LDZ >= max(1,N).
    
         WORK      (workspace) COMPLEX*16 array, dimension (N)
    
         RWORK     (workspace)  DOUBLE  PRECISION  array,   dimension
                   (max(1,3*N-2))
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  if INFO = i, the algorithm  failed  to  con-
                   verge;  i off-diagonal elements of an intermediate
                   tridiagonal form did not converge to zero.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру