The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zlaed0 (3)
  • >> zlaed0 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zlaed0 - the divide and conquer method, ZLAED0 computes  all
         eigenvalues  of  a symmetric tridiagonal matrix which is one
         diagonal block of those from reducing a dense or band Hermi-
         tian  matrix  and corresponding eigenvectors of the dense or
         band matrix
    
    SYNOPSIS
         SUBROUTINE ZLAED0( QSIZ, N, D,  E,  Q,  LDQ,  QSTORE,  LDQS,
                   RWORK, IWORK, INFO )
    
         INTEGER INFO, LDQ, LDQS, N, QSIZ
    
         INTEGER IWORK( * )
    
         DOUBLE PRECISION D( * ), E( * ), RWORK( * )
    
         COMPLEX*16 Q( LDQ, * ), QSTORE( LDQS, * )
    
    
    
         #include <sunperf.h>
    
         void zlaed0(int qsiz, int n, double  *d,  double  *e,  doub-
                   lecomplex  *q, int ldq, doublecomplex *qstore, int
                   ldqs, int *info) ;
    
    PURPOSE
         Using the divide and conquer  method,  ZLAED0  computes  all
         eigenvalues  of  a symmetric tridiagonal matrix which is one
         diagonal block of those from reducing a dense or band Hermi-
         tian  matrix  and corresponding eigenvectors of the dense or
         band matrix.
    
    
    ARGUMENTS
         QSIZ      (input) INTEGER
                   The dimension of the unitary matrix used to reduce
                   the full matrix to tridiagonal form.  QSIZ >= N if
                   ICOMPQ = 1.
    
         N         (input) INTEGER
                   The dimension of the symmetric tridiagonal matrix.
                   N >= 0.
    
         D         (input/output) DOUBLE PRECISION  array,  dimension
                   (N)
                   On entry, the diagonal elements of the tridiagonal
                   matrix.   On  exit,  the  eigenvalues in ascending
                   order.
    
         E         (input/output) DOUBLE PRECISION  array,  dimension
                   (N-1)
                   On entry, the off-diagonal elements of the  tridi-
                   agonal matrix.  On exit, E has been destroyed.
    
         Q         (input/output) COMPLEX*16 array, dimension (LDQ,N)
                   On entry, Q must contain an QSIZ x N matrix  whose
                   columns unitarily orthonormal. It is a part of the
                   unitary matrix that reduces the full dense  Hermi-
                   tian matrix to a (reducible) symmetric tridiagonal
                   matrix.
    
         LDQ       (input) INTEGER
                   The leading dimension of  the  array  Q.   LDQ  >=
                   max(1,N).
    
         IWORK     (workspace) INTEGER array,
                   the dimension of IWORK must be at least 6 + 6*N  +
                   5*N*lg  N ( lg( N ) = smallest integer k such that
                   2^k >= N )
    
         RWORK     (workspace) DOUBLE PRECISION array,
                   dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N  )
                   = smallest integer k such that 2^k >= N )
    
                   QSTORE  (workspace)  COMPLEX*16  array,  dimension
                   (LDQS,  N)  Used to store parts of the eigenvector
                   matrix when the updating  matrix  multiplies  take
                   place.
    
         LDQS      (input) INTEGER
                   The leading dimension of the array  QSTORE.   LDQS
                   >= max(1,N).
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  The algorithm failed to  compute  an  eigen-
                   value while working on the submatrix lying in rows
                   and columns INFO/(N+1) through mod(INFO,N+1).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру