The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zlagtm (3)
  • >> zlagtm (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zlagtm - perform a matrix-vector product of the form   B  :=
         alpha * A * X + beta * B  where A is a tridiagonal matrix of
         order N, B and X are N by NRHS matrices, and alpha and  beta
         are  real  scalars, each of which may be zero, one, or minus
         one
    
    SYNOPSIS
         SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX,
                   BETA, B, LDB )
    
         CHARACTER TRANS
    
         INTEGER LDB, LDX, N, NRHS
    
         DOUBLE PRECISION ALPHA, BETA
    
         COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX,  *
                   )
    
    
    
         #include <sunperf.h>
    
         void zlagtm(char trans, int n, int nrhs, double alpha, doub-
                   lecomplex  *dl,  doublecomplex  *d,  doublecomplex
                   *du, doublecomplex *zx,  int  ldx,  double  dbeta,
                   doublecomplex *zb, int ldb) ;
    
    PURPOSE
         ZLAGTM performs a matrix-vector product of the form
    
    
    ARGUMENTS
         TRANS     (input) CHARACTER
                   Specifies the operation applied to A.  = 'N':   No
                   transpose, B := alpha * A * X + beta * B
                   = 'T':  Transpose,    B := alpha * A**T * X + beta
                   * B
                   = 'C':  Conjugate transpose, B := alpha * A**H * X
                   + beta * B
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         NRHS      (input) INTEGER
                   The number of right hand sides, i.e.,  the  number
                   of columns of the matrices X and B.
    
         ALPHA     (input) DOUBLE PRECISION
                   The scalar alpha.  ALPHA must be 0., 1.,  or  -1.;
                   otherwise, it is assumed to be 0.
    
         DL        (input) COMPLEX*16 array, dimension (N-1)
                   The (n-1) sub-diagonal elements of T.
    
         D         (input) COMPLEX*16 array, dimension (N)
                   The diagonal elements of T.
    
         DU        (input) COMPLEX*16 array, dimension (N-1)
                   The (n-1) super-diagonal elements of T.
    
         X         (input) COMPLEX*16 array, dimension (LDX,NRHS)
                   The N by NRHS matrix X.  LDX      (input)  INTEGER
                   The  leading  dimension  of  the  array X.  LDX >=
                   max(N,1).
    
         BETA      (input) DOUBLE PRECISION
                   The scalar beta.  BETA must be  0.,  1.,  or  -1.;
                   otherwise, it is assumed to be 1.
    
         B         (input/output)   COMPLEX*16    array,    dimension
                   (LDB,NRHS)
                   On entry, the N by NRHS matrix B.  On exit,  B  is
                   overwritten  by the matrix expression B := alpha *
                   A * X + beta * B.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(N,1).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру