The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zptrfs (3)
  • >> zptrfs (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zptrfs - improve the computed solution to a system of linear
         equations  when the coefficient matrix is Hermitian positive
         definite and tridiagonal,  and  provides  error  bounds  and
         backward error estimates for the solution
    
    SYNOPSIS
         SUBROUTINE ZPTRFS( UPLO, N, NRHS, D, E, DF, EF, B,  LDB,  X,
                   LDX, FERR, BERR, WORK, RWORK, INFO )
    
         CHARACTER UPLO
    
         INTEGER INFO, LDB, LDX, N, NRHS
    
         DOUBLE PRECISION BERR( * ), D( * ), DF(  *  ),  FERR(  *  ),
                   RWORK( * )
    
         COMPLEX*16 B( LDB, * ), E( * ), EF( * ), WORK( * ), X(  LDX,
                   * )
    
    
    
         #include <sunperf.h>
    
         void zptrfs(char uplo, int n, int  nrhs,  double  *d,  doub-
                   lecomplex *e, double *df, doublecomplex *ef, doub-
                   lecomplex *zb, int  ldb,  doublecomplex  *zx,  int
                   ldx, double *ferr, double *berr, int *info) ;
    
    PURPOSE
         ZPTRFS improves the computed solution to a system of  linear
         equations  when the coefficient matrix is Hermitian positive
         definite and tridiagonal,  and  provides  error  bounds  and
         backward error estimates for the solution.
    
    
    ARGUMENTS
         UPLO      (input) CHARACTER*1
                   Specifies whether the superdiagonal or the  subdi-
                   agonal  of  the tridiagonal matrix A is stored and
                   the form of the factorization:
                   = 'U':  E is the  superdiagonal  of  A,  and  A  =
                   U**H*D*U;
                   = 'L':  E  is  the  subdiagonal  of  A,  and  A  =
                   L*D*L**H.   (The  two forms are equivalent if A is
                   real.)
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         NRHS      (input) INTEGER
                   The number of right hand sides, i.e.,  the  number
                   of columns of the matrix B.  NRHS >= 0.
    
         D         (input) DOUBLE PRECISION array, dimension (N)
                   The n real diagonal elements  of  the  tridiagonal
                   matrix A.
    
         E         (input) COMPLEX*16 array, dimension (N-1)
                   The (n-1) off-diagonal elements of the tridiagonal
                   matrix A (see UPLO).
    
         DF        (input) DOUBLE PRECISION array, dimension (N)
                   The n diagonal elements of the diagonal  matrix  D
                   from the factorization computed by ZPTTRF.
    
         EF        (input) COMPLEX*16 array, dimension (N-1)
                   The (n-1) off-diagonal elements of the unit  bidi-
                   agonal  factor  U or L from the factorization com-
                   puted by ZPTTRF (see UPLO).
    
         B         (input) COMPLEX*16 array, dimension (LDB,NRHS)
                   The right hand side matrix B.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(1,N).
    
         X         (input/output)   COMPLEX*16    array,    dimension
                   (LDX,NRHS)
                   On entry, the solution matrix X,  as  computed  by
                   ZPTTRS.  On exit, the improved solution matrix X.
    
         LDX       (input) INTEGER
                   The leading dimension of  the  array  X.   LDX  >=
                   max(1,N).
    
         FERR      (output) DOUBLE PRECISION array, dimension (NRHS)
                   The forward error bound for each  solution  vector
                   X(j)  (the  j-th column of the solution matrix X).
                   If XTRUE is the  true  solution  corresponding  to
                   X(j),  FERR(j) is an estimated upper bound for the
                   magnitude of the largest element in (X(j) - XTRUE)
                   divided by the magnitude of the largest element in
                   X(j).
    
         BERR      (output) DOUBLE PRECISION array, dimension (NRHS)
                   The componentwise relative backward error of  each
                   solution  vector X(j) (i.e., the smallest relative
                   change in any element of A or B that makes X(j) an
                   exact solution).
    
         WORK      (workspace) COMPLEX*16 array, dimension (N)
    
         RWORK     (workspace) DOUBLE PRECISION array, dimension (N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру