NAME zunmbr - VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N' SYNOPSIS SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO ) CHARACTER SIDE, TRANS, VECT INTEGER INFO, K, LDA, LDC, LWORK, M, N COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( LWORK ) #include <sunperf.h> void zunmbr(char vect, char side, char trans, int m, int n, int k, doublecomplex *za, int lda, doublecomplex *tau, doublecomplex *zc, int ldc, int *info) ; PURPOSE If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': P * C C * P TRANS = 'C': P**H * C C * P**H Here Q and P**H are the unitary matrices determined by ZGEBRD when reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and P**H are defined as products of ele- mentary reflectors H(i) and G(i) respectively. Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order of the unitary matrix Q or P**H that is applied. If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k, Q = H(1) H(2) . . . H(k); if nq < k, Q = H(1) H(2) . . . H(nq-1). If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P = G(1) G(2) . . . G(k); if k >= nq, P = G(1) G(2) . . . G(nq-1). ARGUMENTS VECT (input) CHARACTER*1 = 'Q': apply Q or Q**H; = 'P': apply P or P**H. SIDE (input) CHARACTER*1 = 'L': apply Q, Q**H, P or P**H from the Left; = 'R': apply Q, Q**H, P or P**H from the Right. TRANS (input) CHARACTER*1 = 'N': No transpose, apply Q or P; = 'C': Conjugate transpose, apply Q**H or P**H. M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. K (input) INTEGER If VECT = 'Q', the number of columns in the origi- nal matrix reduced by ZGEBRD. If VECT = 'P', the number of rows in the original matrix reduced by ZGEBRD. K >= 0. A (input) COMPLEX*16 array, dimension (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if VECT = 'P' The vectors which define the elementary reflectors H(i) and G(i), whose products determine the matrices Q and P, as returned by ZGEBRD. LDA (input) INTEGER The leading dimension of the array A. If VECT = 'Q', LDA >= max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)). TAU (input) COMPLEX*16 array, dimension (min(nq,K)) TAU(i) must contain the scalar factor of the ele- mentary reflector H(i) or G(i) which determines Q or P, as returned by ZGEBRD in the array argument TAUQ or TAUP. C (input/output) COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q or P*C or P**H*C or C*P or C*P**H. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an ille- gal value
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |