The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zunmqr (3)
  • >> zunmqr (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zunmqr - overwrite the general complex M-by-N matrix C  with
         SIDE = 'L' SIDE = 'R' TRANS = 'N'
    
    SYNOPSIS
         SUBROUTINE ZUNMQR( SIDE, TRANS, M, N, K,  A,  LDA,  TAU,  C,
                   LDC, WORK, LWORK, INFO )
    
         CHARACTER SIDE, TRANS
    
         INTEGER INFO, K, LDA, LDC, LWORK, M, N
    
         COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( LWORK )
    
    
    
         #include <sunperf.h>
    
         void zunmqr(char side, char trans, int  m,  int  n,  int  k,
                   doublecomplex  *za,  int  lda, doublecomplex *tau,
                   doublecomplex *zc, int ldc, int *info) ;
    
    PURPOSE
         ZUNMQR overwrites the general complex M-by-N matrix  C  with
         TRANS = 'C':      Q**H * C       C * Q**H
    
         where Q is a complex unitary matrix defined as  the  product
         of k elementary reflectors
    
               Q = H(1) H(2) . . . H(k)
    
         as returned by ZGEQRF. Q is of order M if SIDE = 'L' and  of
         order N if SIDE = 'R'.
    
    
    ARGUMENTS
         SIDE      (input) CHARACTER*1
                   = 'L': apply Q or Q**H from the Left;
                   = 'R': apply Q or Q**H from the Right.
    
         TRANS     (input) CHARACTER*1
                   = 'N':  No transpose, apply Q;
                   = 'C':  Conjugate transpose, apply Q**H.
    
         M         (input) INTEGER
                   The number of rows of the matrix C. M >= 0.
    
         N         (input) INTEGER
                   The number of columns of the matrix C. N >= 0.
    
         K         (input) INTEGER
                   The number of elementary reflectors whose  product
                   defines the matrix Q.  If SIDE = 'L', M >= K >= 0;
                   if SIDE = 'R', N >= K >= 0.
    
         A         (input) COMPLEX*16 array, dimension (LDA,K)
                   The i-th column  must  contain  the  vector  which
                   defines  the  elementary  reflector  H(i), for i =
                   1,2,...,k, as returned by ZGEQRF in  the  first  k
                   columns of its array argument A.  A is modified by
                   the routine but restored on exit.
    
         LDA       (input) INTEGER
                   The leading dimension of the array A.  If  SIDE  =
                   'L',  LDA  >=  max(1,M);  if  SIDE  =  'R', LDA >=
                   max(1,N).
    
         TAU       (input) COMPLEX*16 array, dimension (K)
                   TAU(i) must contain the scalar factor of the  ele-
                   mentary reflector H(i), as returned by ZGEQRF.
    
         C         (input/output) COMPLEX*16 array, dimension (LDC,N)
                   On entry, the M-by-N matrix  C.   On  exit,  C  is
                   overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
    
         LDC       (input) INTEGER
                   The leading dimension  of  the  array  C.  LDC  >=
                   max(1,M).
    
         WORK      (workspace/output)  COMPLEX*16  array,   dimension
                   (LWORK)
                   On exit, if INFO = 0, WORK(1) returns the  optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The dimension of the array WORK.  If SIDE  =  'L',
                   LWORK  >=  max(1,N);  if  SIDE  =  'R',  LWORK  >=
                   max(1,M).  For optimum performance LWORK  >=  N*NB
                   if  SIDE  =  'L', and LWORK >= M*NB if SIDE = 'R',
                   where NB is the optimal blocksize.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру